744 research outputs found

    Properties of quasi-periodic pulsations in solar flares from a single active region

    Get PDF
    We investigate the properties of a set of solar flares originating from a single active region (AR) that exhibit QPPs, and look for signs of the QPP periods relating to AR properties. The AR studied, best known as NOAA 12192, was unusually long-lived and produced 181 flares. Data from the GOES, EVE, Fermi, Vernov and NoRH observatories were used to determine if QPPs were present in the flares. For the soft X-ray GOES and EVE data, the time derivative of the signal was used. Power spectra of the time series data (without any form of detrending) were inspected, and flares with a peak above the 95% confidence level in the spectrum were labelled as having candidate QPPs. The confidence levels were determined taking account of uncertainties and the possible presence of red noise. AR properties were determined using HMI line of sight magnetograms. A total of 37 flares (20% of the sample) show good evidence of having QPPs, and some of the pulsations can be seen in data from multiple instruments and in different wavebands. The QPP periods show a weak correlation with the flare amplitude and duration, but this may be due to an observational bias. A stronger correlation was found between the QPP period and duration of the QPP signal, which can be partially but not entirely explained by observational constraints. No correlations were found with the AR area, bipole separation, or average magnetic field strength. The fact that a substantial fraction of the flare sample showed evidence of QPPs using a strict detection method with minimal processing of the data demonstrates that these QPPs are a real phenomenon, which cannot be explained by the presence of red noise or the superposition of multiple unrelated flares. The lack of correlation between the QPP periods and AR properties implies that the small-scale structure of the AR is important, and/or that different QPP mechanisms act in different cases.Comment: 23 pages, 57 figures. Accepted for publication by Astronomy & Astrophysic

    Diffusion and Transport Coefficients in Synthetic Opals

    Full text link
    Opals are structures composed of the closed packing of spheres in the size range of nano-to-micro meter. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the termal and electrical conductivity makes possible to estimate the transport coefficients of opal structures. We estimate this changes as function of the neck size and the mean-free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures.Comment: Submitted to PR

    Metallic Xenon, Molecular Condensates, and Superconductivity

    Full text link
    A possibility of explaining the light absorption observed to occur under pressure-induced xenon metallization as due to the transition to the superconducting state is analyzed. The mechanism of the van der Waals bonding is discussed.Comment: LaTeX 2.09 (RevTeX), 4 pages, 4 PostScript figures included in tex

    Gain limits of a Thick GEM in high-purity Ne, Ar and Xe

    Get PDF
    The dependence of the avalanche charge gain in Thick Gas Electron Multipliers (THGEM) on the purity of Ne, Ar and Xe filling gases was investigated. The gain, measured with alpha-particles in standard conditions (atmospheric pressure, room temperature), was found to considerably drop in gases purified by non-evaporable getters. On the other hand, small N2 admixtures to noble gases resulted in high reachable gains. The results are of general relevance in the operation of gas-avalanche detectors in noble gases, particularly that of two-phase cryogenic detectors for rare events.Comment: 15 pages, 6 figures, submitted to JINS

    Organization and Management of the International Space Station (ISS) Multilateral Medical Operations

    Get PDF
    The goal of this work is to review the principles, design, and function of the ISS multilateral medical authority and the medical support system of the ISS Program. Multilateral boards and panels provide operational framework, direct, and supervise the ISS joint medical operational activities. The Integrated Medical Group (IMG) provides front-line medical support of the crews. Results of ongoing activities are reviewed weekly by physician managers. A broader status review is conducted monthly to project the state of crew health and medical support for the following month. All boards, panels, and groups function effectively and without interruptions. Consensus prevails as the primary nature of decisions made by all ISS medical groups, including the ISS medical certification board. The sustained efforts of all partners have resulted in favorable medical outcomes of the initial fourteen long-duration expeditions. The medical support system appears to be mature and ready for further expansion of the roles of all Partners, and for the anticipated increase in the size of ISS crews

    Secondary antiprotons and propagation of cosmic rays in the Galaxy and heliosphere

    Get PDF
    High-energy collisions of cosmic-ray nuclei with interstellar gas are believed to be the mechanism producing the majority of cosmic ray antiprotons. Due to the kinematics of the process they are created with a nonzero momentum; the characteristic spectral shape with a maximum at ~2 GeV and a sharp decrease towards lower energies makes antiprotons a unique probe of models for particle propagation in the Galaxy and modulation in the heliosphere. On the other hand, accurate calculation of the secondary antiproton flux provides a ``background'' for searches for exotic signals from the annihilation of supersymmetric particles and primordial black hole evaporation. Recently new data with large statistics on both low and high energy antiproton fluxes have become available which allow such tests to be performed. We use our propagation code GALPROP to calculate interstellar cosmic-ray propagation for a variety of models. We show that there is no simple model capable of accurately describing the whole variety of data: boron/carbon and sub-iron/iron ratios, spectra of protons, helium, antiprotons, positrons, electrons, and diffuse gamma rays. We find that only a model with a break in the diffusion coefficient plus convection can reproduce measurements of cosmic-ray species, and the reproduction of primaries (p, He) can be further improved by introducing a break in the primary injection spectra. For our best-fit model we make predictions of proton and antiproton fluxes near the Earth for different modulation levels and magnetic polarity using a steady-state drift model of propagation in the heliosphere.Comment: Many Updates, 20 pages, 15 ps-figures, emulateapj5.sty. To be published in ApJ v.564 January 10, 2002 issue. More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm

    Feasibility of a Small, Rapid Optical-to-IR Response, Next Generation Gamma Ray Burst Mission

    Full text link
    We present motivations for and study feasibility of a small, rapid optical to IR response gamma ray burst (GRB) space observatory. By analyzing existing GRB data, we give realistic detection rates for X-ray and optical/IR instruments of modest size under actual flight conditions. Given new capabilities of fast optical/IR response (about 1 s to target) and simultaneous multi-band imaging, such an observatory can have a reasonable event rate, likely leading to new science. Requiring a Swift-like orbit, duty cycle, and observing constraints, a Swift-BAT scaled down to 190 square cm of detector area would still detect and locate about 27 GRB per yr. for a trigger threshold of 6.5 sigma. About 23 percent of X-ray located GRB would be detected optically for a 10 cm diameter instrument (about 6 per yr. for the 6.5 sigma X-ray trigger).Comment: Elaborated text version of a poster presented at 2012 Malaga/Marbella symposiu
    • …
    corecore