23 research outputs found

    Cross-sensitization to Artemisia and Ambrosia Pollen Allergens in an Area Located Outside of the Current Distribution Range of Ambrosia

    Get PDF
    Introduction : The role of long-distance transported (LDT) Ambrosia pollen in inducing new sensitization and affecting sensitization rates in Artemisia -sensitized patients is unclear. Aim : The aim of this study was to estimate the degree of cross-sensitization to Ambrosia / Artemisia allergens in citizens of Poznan (Western Poland). This area is covered by extensive Artemisia populations but does not currently have local Ambrosia populations. Material and methods : Sera of 119 patients were tested by fluoroenzyme immunoassay (CAP-FEIA system) against pollen allergen extracts of Artemisia vulgaris and Ambrosia artemisiifolia , an allergenic component of A. vulgaris (nArt v 1), and an allergenic component of A. artemisiifolia ( nAmb a 1 ). Skin prick tests (SPTs, n = 86) were performed with pollen allergen extracts of A. vulgaris and A. artemisiifolia . Artemisia and Ambrosia pollen in ambient air was collected (1996�2013) by a Hirst type volumetric trap sited at roof level (33 m). Results : The SPT showed that the prevalence of sensitization to Ambrosia and Artemisia pollen exceeded 3.5, and 10.5, respectively. The measurements of IgE in blood serum (CAP-FEIA) revealed that among Ambrosia -sensitized patients 90.1 (20/22 patients) were concomitantly sensitized to Artemisia . 59.1 (13/22) of these patients reacted to nArt v 1, suggesting primary sensitization to Artemisia pollen. Only 2 (9.1) patients were mono-sensitized to Ambrosia pollen extract, but surprisingly not to nAmb a 1 . Conclusions : The LDT Ambrosia pollen had a negligible effect on the rate of sensitization to Ambrosia allergens in Poznan and did not increase the prevalence of sensitization to Artemisia pollen in this region. However, the majority of patients showing hypersensitization to Artemisia pollen might also present symptoms during elevated episodes of LDT of Ambrosia pollen

    Concomitant Occurrence of Anthropogenic Air Pollutants, Mineral Dust and Fungal Spores During Long-distance Transport of Ragweed Pollen

    Get PDF
    Abstract: Large-scale synoptic conditions are able to transport considerable amounts of airborne particles over entire continents by creating substantial air mass movement. This phenomenon is observed in Europe in relation to highly allergenic ragweed (Ambrosia L.) pollen that are transported from populations in Central Europe (mainly the Pannonian Plain and Balkans) to the North. The path taken by atmospheric ragweed pollen often passes through the highly industrialised mining region of Silesia in Southern Poland, considered to be one of the most polluted areas in the EU. It is hypothesized that chemical air pollutants released over Silesia could become mixed with biological material and be transported to less polluted regions further North. We analysed levels of air pollution during episodes of longdistance transport (LDT) of ragweed pollen to Poland. Results show that, concomitantly with pollen, the concentration of air pollutants with potential health-risk, i.e. SO2, and PM10, have also significantly increased (by 104% and 37%, respectively) in the receptor area (Western Poland). Chemical transport modelling (EMEP) and air mass back-trajectory analysis (HYSPLIT) showed that potential sources of PM10 include Silesia, as well as mineral dust from the Ukrainian steppe and the Sahara Desert. In addition, atmospheric concentrations of other allergenic biological particles, i.e. Alternaria Nees ex Fr. spores, also increased markedly (by 115%) during LDT episodes. We suggest that the LDT episodes of ragweed pollen over Europe are not a “one-component” phenomenon, but are often related to elevated levels of chemical air pollutants and other biotic and abiotic components (fungal spores and desert dust)

    Pollen Nightmare: Elevated Airborne Pollen Levels at Night

    Get PDF
    High airborne pollen concentrations are generally associated with daylight hours when it is sunny and warm and plants release pollen into the air (Alcázar et al. 1999; Dahl et al. 2013). In contrast, cooler night-time periods are usually considered to be the time of low-allergy risk. This opinion is often reflected in pollen allergy avoidance strategies presented by the media, where the most commonly repeated recommendation is to stay indoors during the day and plan outdoor activities for the evening. However, there is evidence to suggest that elevated concentrations of airborne pollen might also occur during the evening (e.g. Norris-Hill and Emberlin 1991). So, is the night really a time of low-allergy risk? We present the results of the comparative analysis of pollen concentrations during daytime and night-time hours for five allergenic pollen types (Burbach et al. 2009), i.e. alder (Alnus sp.), birch (Betula sp.), grasses (Poaceae), mugwort (Artemisia sp.) and ragweed (Ambrosia sp.)

    Mesoscale Atmospheric Transport of Ragweed Pollen Allergens from Infected to Uninfected Areas

    Get PDF
    Allergenic ragweed (Ambrosia spp.) pollen grains, after being released from anthers, can be dispersed by air masses far from their source. However, the action of air temperature,humidity and solar radiation on pollen grains in the atmosphere could impact on the ability of long distance transported (LDT) pollen to maintain allergenic potency. Here, we report that the major allergen of Ambrosia artemisiifolia pollen (Amb a 1) collected in ambient air during episodes of LDT still have immunoreactive properties. The amount of Amb a 1 found in LDT ragweed pollen grains was not constant and varied between episodes. In addition to allergens in pollen sized particles, we detected reactive Amb a 1 in subpollen sized respirable particles. These findings suggest that ragweed pollen grains have the potential to cause allergic reactions, not only in the heavily infested areas but, due to LDT episodes, also in the regions unaffected by ragweed populations

    Concomitant Occurrence of Desert Dust, Fungal Spores and Anthropogenic Air Pollutants During Long Distance Transport of Ragweed Pollen

    No full text
    Background: The atmospheric pathway of ragweed pollen from Southeastern to Northern Europe often passes through highly industrial mining district in Southern Poland (Silesia region) considered as one of the most polluted area in EU. It is hypothesized that air pollutants released over Silesia might be uplifted, mixed with pollen, and concomitantly transported further North to less polluted regions. Methods: The monitoring of ragweed pollen and fungal spores was conducted between 2005-2015 in Poznań, Poland and Budapest, Hungary by 7-days volumetric traps of Hirst design. Following mean daily air pollutant levels have been extracted from the Polish Inspectorate for Environmental Protection database: carbon monoxide (CO), sulphur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter (PM2.5 and PM10). The pathways of air masses with ragweed pollen to Poznań have been calculated using HYSPLIT model. Results: During the episodes of long-distance transport (LDT) of ragweed pollen to Poland the concentration of potentially health-risk air pollutants, i.e., PM10, and SO2 have also significantly increased. The analysis revealed that PM10 released over Silesia might reach Northern Poland during LDT episodes. In particular LDT episodes the high fraction of PM10 were associated with the transport of desert dust, that may originated from both Sahara desert and Ukrainian steppe. In addition, during LDT episodes the concentration of other allergenic biological particles, i.e. Alternaria and Cladosporium spores have also markedly increased. Conclusions: We suggest that the LDT episodes of ragweed pollen are much more hazardous and clinically important than it was suspected, as they are related to elevated levels of anthropogenic and natural air pollutants (including fungal spores and desert dust)

    Abundance of Ganoderma sp. in Europe and SW Asia: modelling the pathogen infection levels in local trees using the proxy of airborne fungal spore concentrations

    No full text
    Ganoderma comprises a common bracket fungal genus that causes basal stem rot in deciduous and coniferous trees and palms, thus having a large economic impact on forestry production. We estimated pathogen abundance using long-term, daily spore concentration data collected in five biogeographic regions in Europe and SW Asia. We hypothesized that pathogen abundance in the air depends on the density of potential hosts (trees) in the surrounding area, and that its spores originate locally. We tested this hypothesis by (1) calculating tree cover density, (2) assessing the impact of local meteorological variables on spore concentration, (3) computing back trajectories, (4) developing random forest models predicting daily spore concentration. The area covered by trees was calculated based on Tree Density Datasets within a 30 km radius from sampling sites. Variations in daily and seasonal spore concentrations were cross-examined between sites using a selection of statistical tools including HYSPLIT and random forest models. Our results showed that spore concentrations were higher in Northern and Central Europe than in South Europe and SW Asia. High and unusually high spore concentrations (> 90th and > 98th percentile, respectively) were partially associated with long distance transported spores: at least 33% of Ganoderma spores recorded in Madeira during days with high concentrations originated from the Iberian Peninsula located >900 km away. Random forest models developed on local meteorological data performed better in sites where the contribution of long distance transported spores was lower. We found that high concentrations were recorded in sites with low host density (Leicester, Worcester), and low concentrations in Kastamonu with high host density. This suggests that south European and SW Asian forests may be less severely affected by Ganoderma. This study highlights the effectiveness of monitoring airborne Ganoderma spore concentrations as a tool for assessing local Ganoderma pathogen infection levels

    Rab46 is a novel mast cell gtpase localised to secretory granules

    No full text
    [[abstract]]Background: In this meta-analysis we evaluated strategies on augmentation of host immunity against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. Method: We searched clinical trials registered at the National Institutes of Health by 30 November 2020, and conducted analyses on inoculated population, involved immunological processes, source of injected components, and trial phases. We then searched PubMed, Embase, Scopus, and the Cochrane Central Register of Controlled Trials for their corresponding reports. A bivariate random-effects meta-analysis was used to derive the pooled estimate of seroconversion and adverse events (AEs). Results: A total of 540,269 participants were enrolled in 225 identified trials. The working mechanisms included heterologous immunity, active immunity, passive immunity, and immunotherapy. A total of 2,565 healthy adults from 10 clinical trials were included for meta-analyses. The odd ratio (OR) was 90.82 for kinetics of serologic responses to anti-SARS-CoV-2 antibody IgG titer (95% CI =36.1 – 228.49; p < 0.00001). The pooled ORs were 2.57 for solicited systemic AEs (95%CI =1.57 – 4.21; p = 0.0002), 5.72 for solicited local AEs (95% CI=2.59 – 12.67; p < 0.0001), and 2.08 for unsolicited systemic events (95% CI=1.42 – 3.05; p = 0.0002), compared to placebo or conservative treatment. Conclusion: Among all immune-augmentative interventions, a paradigm shift to vaccines providing active immunity was observed. The efficacy of these interventions was promising although systemic adverse events were noted

    Bioaerosols on the atmospheric super highway: An example of long distance transport of Alternaria spores from the Pannonian Plain to Poland

    No full text
    Alternaria spores are pathogenic to agricultural crops, and the longest and the most severe sporulation seasons are predominantly recorded in rural areas, e.g. the Pannonian Plain (PP) in South-Central Europe. In Poland (Central Europe), airborne Alternaria spore concentrations peak between July and August. In this study, we test the hypothesis that the PP is the source of Alternaria spores recorded in Poland after the main sporulation season (September–October). Airborne Alternaria spores (2005–2019) were collected using volumetric Hirst spore traps located in 38 locations along the potential pathways of air masses, i.e. from Serbia, Romania and Hungary, through the Czech Republic, Slovakia and Ukraine, to Northern Poland. Three potential episodes of Long Distance Transport (LDT) were selected and characterized in detail, including the analysis of Alternaria spore data, back trajectory analysis, dispersal modelling, and description of local weather and mesoscale synoptic conditions. During selected episodes, increases in Alternaria spore concentrations in Poznań were recorded at unusual times that deviated from the typical diurnal pattern, i.e. at night or during morning hours. Alternaria spore concentrations on the PP were very high (>1000 spores/m3) at that time. The presence of non-local Ambrosia pollen, common to the PP, were also observed in the air. Air mass trajectory analysis and dispersal modelling showed that the northwest part of the PP, north of the Transdanubian Mountains, was the potential source area of Alternaria spores. Our results show that Alternaria spores are transported over long distances from the PP to Poland. These spores may markedly increase local exposure to Alternaria spores in the receptor area and pose a risk to both human and plant health. Alternaria spores followed the same atmospheric route as previously described LDT ragweed pollen, revealing the existence of an atmospheric super highway that transports bioaerosols from the south to the north of Europe
    corecore