87 research outputs found

    Silicon-on-insulator based nano-photonics: why, how, what for ? (invited paper)

    Get PDF
    Abstract Silicon-on-Insulator is rapidly emerging as a versatile platform for a variety of integrated nano-photonic components. This paper discusses the variety of merits offered by this system. The key technological challenges are discussed as well as the potential in multiple application fields

    The benefits of whole genome sequencing for foodborne outbreak investigation from the perspective of a national reference laboratory in a smaller country

    Get PDF
    Gradually, conventional methods for foodborne pathogen typing are replaced by whole genome sequencing (WGS). Despite studies describing the overall benefits, National Reference Laboratories of smaller countries often show slower uptake of WGS, mainly because of significant investments required to generate and analyze data of a limited amount of samples. To facilitate this process and incite policy makers to support its implementation, a Shiga toxin-producing Escherichia coli (STEC) O157:H7 (stx1+, stx2+, eae+) outbreak (2012) and a STEC O157:H7 (stx2+, eae+) outbreak (2013) were retrospectively analyzed using WGS and compared with their conventional investigations. The corresponding results were obtained, with WGS delivering even more information, e.g., on virulence and antimicrobial resistance genotypes. Besides a universal, all-in-one workflow with less hands-on-time (five versus seven actual working days for WGS versus conventional), WGS-based cgMLST-typing demonstrated increased resolution. This enabled an accurate cluster definition, which remained unsolved for the 2013 outbreak, partly due to scarce epidemiological linking with the suspect source. Moreover, it allowed detecting two and one earlier circulating STEC O157:H7 (stx1+, stx2+, eae+) and STEC O157:H7 (stx2+, eae+) strains as closely related to the 2012 and 2013 outbreaks, respectively, which might have further directed epidemiological investigation initially. Although some bottlenecks concerning centralized data-sharing, sampling strategies, and perceived costs should be considered, we delivered a proof-of-concept that even in smaller countries, WGS offers benefits for outbreak investigation, if a sufficient budget is available to ensure its implementation in surveillance. Indeed, applying a database with background isolates is critical in interpreting isolate relationships to outbreaks, and leveraging the true benefit of WGS in outbreak investigation and/or prevention

    Validation strategy of a bioinformatics whole genome sequencing workflow for Shiga toxin-producing Escherichia coli using a reference collection extensively characterized with conventional methods

    Get PDF
    Whole genome sequencing (WGS) enables complete characterization of bacterial pathogenic isolates at single nucleotide resolution, making it the ultimate tool for routine surveillance and outbreak investigation. The lack of standardization, and the variation regarding bioinformatics workflows and parameters, however, complicates interoperability among (inter)national laboratories. We present a validation strategy applied to a bioinformatics workflow for Illumina data that performs complete characterization of Shiga toxin-producing Escherichia coli (STEC) isolates including antimicrobial resistance prediction, virulence gene detection, serotype prediction, plasmid replicon detection and sequence typing. The workflow supports three commonly used bioinformatics approaches for the detection of genes and alleles: alignment with blast+, kmer-based read mapping with KMA, and direct read mapping with SRST2. A collection of 131 STEC isolates collected from food and human sources, extensively characterized with conventional molecular methods, was used as a validation dataset. Using a validation strategy specifically adopted to WGS, we demonstrated high performance with repeatability, reproducibility, accuracy, precision, sensitivity and specificity above 95 % for the majority of all assays. The WGS workflow is publicly available as a ‘push-button’ pipeline at https://galaxy.sciensano.be. Our validation strategy and accompanying reference dataset consisting of both conventional and WGS data can be used for characterizing the performance of various bioinformatics workflows and assays, facilitating interoperability between laboratories with different WGS and bioinformatics set-ups

    Evaluation of WGS performance for bacterial pathogen characterization with the Illumina technology optimized for time-critical situations

    Get PDF
    Whole genome sequencing (WGS) has become the reference standard for bacterial outbreak investigation and pathogen typing, providing a resolution unattainable with conventional molecular methods. Data generated with Illumina sequencers can however only be analysed after the sequencing run has finished, thereby losing valuable time during emergency situations. We evaluated both the effect of decreasing overall run time, and also a protocol to transfer and convert intermediary files generated by Illumina sequencers enabling real-time data analysis for multiple samples part of the same ongoing sequencing run, as soon as the forward reads have been sequenced. To facilitate implementation for laboratories operating under strict quality systems, extensive validation of several bioinformatics assays (16S rRNA species confirmation, gene detection against virulence factor and antimicrobial resistance databases, SNP-based antimicrobial resistance detection, serotype determination, and core genome multilocus sequence typing) for three bacterial pathogens (Mycobacterium tuberculosis, Neisseria meningitidis, and Shiga-toxin producing Escherichia coli) was performed by evaluating performance in function of the two most critical sequencing parameters, i.e. read length and coverage. For the majority of evaluated bioinformatics assays, actionable results could be obtained between 14 and 22 h of sequencing, decreasing the overall sequencing-to- results time by more than half. This study aids in reducing the turn-around time of WGS analysis by facilitating a faster response in time-critical scenarios and provides recommendations for time-optimized WGS with respect to required read length and coverage to achieve a minimum level of performance for the considered bioinformatics assay(s), which can also be used to maximize the cost-effectiveness of routine surveillance sequencing when response time is not essential.The Belgian Federal Public Service of Health, Food Chain Safety and Environment and Sciensano RP-PJ - Belgium.https://www.microbiologyresearch.org/content/journal/mgenam2022Genetic

    Optimum Blood Pressure in Patients With Shock After Acute Myocardial Infarction and Cardiac Arrest

    Get PDF
    BACKGROUND In patients with shock after acute myocardial infarction (AMI), the optimal level of pharmacologic support is unknown. Whereas higher doses may increase myocardial oxygen consumption and induce arrhythmias, diastolic hypotension may reduce coronary perfusion and increase infarct size. OBJECTIVES This study aimed to determine the optimal mean arterial pressure (MAP) in patients with AMI and shock after cardiac arrest. METHODS This study used patient-level pooled analysis of post-cardiac arrest patients with shock after AMI randomized in the Neuroprotect (Neuroprotective Goal Directed Hemodynamic Optimization in Post-cardiac Arrest Patients; NCT02541591) and COMACARE (Carbon Dioxide, Oxygen and Mean Arterial Pressure After Cardiac Arrest and Resuscitation; NCT02698917) trials who were randomized to MAP 65 mm Hg or MAP 80/85 to 100 mm Hg targets during the first 36 h after admission. The primary endpoint was the area under the 72-h high-sensitivity troponin-T curve. RESULTS Of 235 patients originally randomized, 120 patients had AMI with shock. Patients assigned to the higher MAP target (n = 58) received higher doses of norepinephrine (p = 0.004) and dobutamine (p = 0.01) and reached higher MAPs (86 +/- 9 mm Hg vs. 72 +/- 10 mm Hg, p <0.001). Whereas admission hemodynamics and angiographic findings were all well-balanced and revascularization was performed equally effective, the area under the 72-h high-sensitivity troponin-T curve was lower in patients assigned to the higher MAP target (median: 1.14 mu g.72 h/l [interquartile range: 0.35 to 2.31 mu g.72 h/l] vs. median: 1.56 mu g.72 h/l [interquartile range: 0.61 to 4.72 mu g. 72 h/l]; p = 0.04). Additional pharmacologic support did not increase the risk of a new cardiac arrest (p = 0.88) or atrial fibrillation (p = 0.94). Survival with good neurologic outcome at 180 days was not different between both groups (64% vs. 53%, odds ratio: 1.55; 95% confidence interval: 0.74 to 3.22). CONCLUSIONS In post-cardiac arrest patients with shock after AMI, targeting MAP between 80/85 and 100 mm Hg with additional use of inotropes and vasopressors was associated with smaller myocardial injury. (C) 2020 by the American College of Cardiology Foundation.Peer reviewe
    • 

    corecore