230 research outputs found

    The Effect of Fe-Al Substitution on the Crystal Structure of MgSiO3 Bridgmanite

    Get PDF
    The crystal chemistry of ten well-characterized bridgmanite single-crystals with Fe and Al contents ranging from 0 to 0.40 atoms per two-cation formula units were investigated by single-crystal X-ray diffraction. Structural refinements indicate that Fe3+ and Al mainly occupy the Mg and Si sites, respectively, when present in similar proportions. Molar volumes of bridgmanite endmember components were refined using data from this and previous studies and found to decrease in the order Fe3+Fe3+O3 > MgFe3+O2.5 > Fe3+AlO3 > MgAlO2.5 > AlAlO3 > Fe2+SiO3 > MgSiO3. Fe3+AlO3 charge-coupled substitution leads to an anisotropic increase of B-O bond distances, resulting in more distorted octahedral B sites and in a more significant increase of the c-axis with respect to the a- and b-axes. Valence bond calculations indicate that the A site is more compressible than the B site for all bridgmanite samples studied, implying that octahedral tilting and distortion will dominate the bridgmanite compression mechanism. Guided by these crystal chemical observations, bulk moduli of bridgmanite endmember components were estimated using results of previous studies. The volume changes of equilibria controlling the speciation of bridgmanite components were then calculated at conditions relevant to the top of Earth's lower mantle. The proportion of oxygen vacancy components is predicted to decrease with pressure. While the stability of the bridgmanite Fe3+AlO3 component will drive charge disproportionation to produce iron metal at the top of the lower mantle, this appears to be much less favorable by 50 GPa. An increase in the proportion of the Fe3+Fe3+O3 bridgmanite component, however, may favor the formation of iron metal at higher pressures

    Estimating the viscosity of volcanic melts from the vibrational properties of their parental glasses

    Get PDF
    Abstract The numerical modelling of magma transport and volcanic eruptions requires accurate knowledge of the viscosity of magmatic liquids as a function of temperature and melt composition. However, there is growing evidence that volcanic melts can be prone to nanoscale modification and crystallization before and during viscosity measurements. This challenges the possibility of being able to quantify the crystal-free melt phase contribution to the measured viscosity. In an effort to establish an alternative route to derive the viscosity of volcanic melts based on the vibrational properties of their parental glasses, we have subjected volcanologically relevant anhydrous glasses to Brillouin and Raman spectroscopic analyses at ambient conditions. Here, we find that the ratio between bulk and shear moduli and the boson peak position embed the melt fragility. We show that these quantities allow an accurate estimation of volcanic melts at eruptive conditions, without the need for viscosity measurements. An extensive review of the literature data confirms that our result also holds for hydrous systems; this study thus provides fertile ground on which to develop new studies of the nanoscale dynamics of natural melts and its impact on the style of volcanic eruptions

    Oxygen Vacancy Ordering in Aluminous Bridgmanite in the Earth's Lower Mantle

    Get PDF
    Oxygen vacancies (OVs), that charge-balance the replacement of octahedrally coordinated Si4+ by Al3+ in the mineral bridgmanite, will influence transport properties in the lower mantle but little is known about their stability and local structure. Using 27Al nuclear magnetic resonance (NMR) spectroscopy we have characterized OVs within six aluminous bridgmanite samples. In the resulting NMR spectra sixfold, fivefold, and fourfold coordinated Al species are resolved, in addition to near eightfold coordinated Al substituting for Mg. Fivefold coordinated Al is formed by single OV sites but fourfold coordination must result from short range ordering of OVs, producing OV clusters that may form through migration into twin domain walls. Characterizing the occurrence of such OV structures is an important prerequisite for understanding how transport properties change with depth and composition in the lower mantle
    • …
    corecore