266 research outputs found

    The RASputin effect

    Get PDF
    By 1916, Rasputin had become an important figure of the corruption of the Romanov court and its treacherous, unpatriotic behavior. For many people on the fringes of the court, Rasputin's corruption was taken as the cause of all of Russia's problems itself. There was the belief that if one could get rid of Rasputin the revolution may not happen. . . . . In a sense, Rasputin's assassination in December 1916, should be seen as just one of a number of palace coup plots

    Rac regulates integrin-mediated spreading and increased adhesion of T lymphocytes

    Get PDF
    Leukocyte adhesion to the extracellular matrix (ECM) is tightly controlled and is vital for the immune response. Circulating lymphocytes leave the bloodstream and adhere to ECM components at sites of inflammation and lymphoid tissues. Mechanisms for regulating T-lymphocyte-ECM adhesion include (i) an alteration in the affinity of cell surface integrin receptors for their extracellular ligands and (ii) an alteration of events following postreceptor occupancy (e.g., cell spreading). Whereas H-Ras and R-Ras were previously shown to affect T-cell adhesion by altering the affinity state of the integrin receptors, no signaling molecule has been identified for the second mechanism. In this study, we demonstrated that expression of an activated mutant of Rac triggered dramatic spreading of T cells and their increased adhesion on immobilized fibronectin in an integrin-dependent manner. This effect was not mimicked by expression of activated mutant forms of Rho, Cdc42, H-Ras, of ARF6, indicating the unique role of pac in this event. The Rac-induced spreading was accompanied by specific cytoskeletal rearrangements; Also, a clustering of integrins at sites of cell adhesion and at the peripheral edges of spread cells was observed. We demonstrate that expression of RacV12 did not alter the level of expression of cell surface integrins or the affinity state of the integrin receptors. Moreover, our results indicate that Rac plays a role in the regulation of T-cell adhesion by a mechanism involving cell spreading, rather than by altering the level of expression or the affinity of the integrin receptors. Furthermore, we show that the Rac-mediated signaling pathway leading to spreading of T lymphocytes did not require activation of c-Jun kinase, serum response factor, or pp70(S6) (kinase) but appeared to involve a phospholipid kinase

    The junctional multidomain protein AF-6 is a binding partner of the Rap1A GTPase and associates with the actin cytoskeletal regulator profilin

    Get PDF
    The AF-6 protein is a multidomain protein that contains two potential Ras-binding domains within its N terminus. Because of this feature, AF-6 has been isolated in both two-hybrid and biochemical approaches and is postulated to be a potential Ras-effector protein, Herein, we show that it is specifically the first Ras-binding domain of AF-6 that mediates this interaction and that the Ras-related Rap1A protein can associate with this motif even more efficiently than the oncogenic Ha-, K-, and N-Ras GTPases. We further demonstrate that both Ras and Rap1 interact with full-length AF-6 in vivo in mammalian cells and that a fraction of Rap1 colocalizes with AF-6 at the membrane. Dominant active Rap1A, in contrast to Ras, when introduced into epithelial MDCK and MCF-7 cells, does not perturb AF-6-specific residency in cell-cell adhesion complexes. In a pursuit to gain further understanding of the role of AF-6 in junctions, we identified profilin as an AF-6-binding protein. Profilin activates monomeric actin units for subsequent polymerization steps at barbed ends of actin filaments and has been shown to participate in cortical actin assembly. To our knowledge, AF-6 is the only integral component in cell-cell junctions discovered thus far that interacts with profilin and thus could modulate actin modeling proximal to adhesion complexes

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    © The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio

    A Functional Genomic Screen Combined with Time-Lapse Microscopy Uncovers a Novel Set of Genes Involved in Dorsal Closure of Drosophila Embryos

    Get PDF
    Morphogenesis, the establishment of the animal body, requires the coordinated rearrangement of cells and tissues regulated by a very strictly-determined genetic program. Dorsal closure of the epithelium in the Drosophila melanogaster embryo is one of the best models for such a complex morphogenetic event. To explore the genetic regulation of dorsal closure, we carried out a large-scale RNA interference-based screen in combination with in vivo time-lapse microscopy and identified several genes essential for the closure or affecting its dynamics. One of the novel dorsal closure genes, the small GTPase activator pebble (pbl), was selected for detailed analysis. We show that pbl regulates actin accumulation and protrusion dynamics in the leading edge of the migrating epithelial cells. In addition, pbl affects dorsal closure dynamics by regulating head involution, a morphogenetic process mechanically coupled with dorsal closure. Finally, we provide evidence that pbl is involved in closure of the adult thorax, suggesting its general requirement in epithelial closure processes

    Lipids induce expression of serum-responsive transmembrane kinase EhTMKB1-9 in an early branching eukaryote Entamoeba histolytica

    Get PDF
    Mechanisms underlying the initiation of proliferative response are known only for a few organisms, and are not understood for the medically important organisms including Entamoeba histolytica. The trans membrane kinase EhTMKB1-9 of E. histolytica is one of the early indicators of proliferation and its' expression is regulated by serum, one of the components necessary for cellular proliferation in vitro. In this study we show that bovine serum albumin (BSA) can induce EhTMKB1-9 expression in place of serum, and that both follow the same mechanism. Both serum and BSA use the same promoter element and the activation process is initiated through a PI3 kinase-mediated pathway. We further show that BSA activates EhTMKB1-9 due to the lipids associated with it and that unsaturated fatty acids are responsible for activation. These results suggest that lipid molecules are ligand(s) for initiation of a signaling system that stimulates EhTMKB1-9 expression

    Binding Properties and Stability of the Ras-Association Domain of Rap1-GTP Interacting Adapter Molecule (RIAM)

    Get PDF
    The Rap1-GTP interacting adapter protein (RIAM) is an important protein in Rap1-mediated integrin activation. By binding to both Rap1 GTPase and talin, RIAM recruits talin to the cell membrane, thus facilitating talin-dependent integrin activation. In this article, we studied the role of the RIAM Ras-association (RA) and pleckstrin-homology (PH) domains in the interaction with Rap1. We found that the RA domain was sufficient for GTP-dependent interaction with Rap1B, and the addition of the PH domain did not change the binding affinity. We also detected GTP-independent interaction of Rap1B with the N-terminus of RIAM. In addition, we found that the PH domain stabilized the RA domain both in vitro and in cells

    Small RNAs with 5′-Polyphosphate Termini Associate with a Piwi-Related Protein and Regulate Gene Expression in the Single-Celled Eukaryote Entamoeba histolytica

    Get PDF
    Small interfering RNAs regulate gene expression in diverse biological processes, including heterochromatin formation and DNA elimination, developmental regulation, and cell differentiation. In the single-celled eukaryote Entamoeba histolytica, we have identified a population of small RNAs of 27 nt size that (i) have 5′-polyphosphate termini, (ii) map antisense to genes, and (iii) associate with an E. histolytica Piwi-related protein. Whole genome microarray expression analysis revealed that essentially all genes to which antisense small RNAs map were not expressed under trophozoite conditions, the parasite stage from which the small RNAs were cloned. However, a number of these genes were expressed in other E. histolytica strains with an inverse correlation between small RNA and gene expression level, suggesting that these small RNAs mediate silencing of the cognate gene. Overall, our results demonstrate that E. histolytica has an abundant 27 nt small RNA population, with features similar to secondary siRNAs from C. elegans, and which appear to regulate gene expression. These data indicate that a silencing pathway mediated by 5′-polyphosphate siRNAs extends to single-celled eukaryotic organisms

    Innate immunity in ocular Chlamydia trachomatis infection: contribution of IL8 and CSF2 gene variants to risk of trachomatous scarring in Gambians

    Get PDF
    BACKGROUND: Trachoma, a chronic keratoconjunctivitis caused by Chlamydia trachomatis, is the world's commonest infectious cause of blindness. Blindness is due to progressive scarring of the conjunctiva (trachomatous scarring) leading to in-turning of eyelashes (trichiasis) and corneal opacification. We evaluated the contribution of genetic variation across the chemokine and cytokine clusters in chromosomes 4q and 5q31 respectively to risk of scarring trachoma and trichiasis in a large case-control association study in a Gambian population. METHODS: Linkage disequilibrium (LD) mapping was used to investigate risk effects across the 4q and 5q31 cytokine clusters in relation to the risk of scarring sequelae of ocular Ct infection. Disease association and epistatic effects were assessed in a population based study of 651 case-control pairs by conditional logistic regression (CLR) analyses. RESULTS: LD mapping suggested that genetic effects on risk within these regions mapped to the pro-inflammatory innate immune genes interleukin 8 (IL8) and granulocyte-macrophage colony stimulatory factor (CSF2) loci. The IL8-251 rare allele (IL8-251 TT) was associated with protection from scarring trachoma (OR = 0.29 p = 0.027). The intronic CSF2_27348 A allele in chromosome 5q31 was associated with dose dependent protection from trichiasis, with each copy of the allele reducing risk by 37% (p = 0.005). There was evidence of epistasis, with effects at IL8 and CSF2 loci interacting with those previously reported at the MMP9 locus, a gene acting downstream to IL8 and CSF2 in the inflammatory cascade. CONCLUSION: innate immune response SNP-haplotypes are linked to ocular Ct sequelae. This work illustrates the first example of epistatic effects of two genes on trachoma

    Serum-Dependent Selective Expression of EhTMKB1-9, a Member of Entamoeba histolytica B1 Family of Transmembrane Kinases

    Get PDF
    Entamoeba histolytica transmembrane kinases (EhTMKs) can be grouped into six distinct families on the basis of motifs and sequences. Analysis of the E. histolytica genome revealed the presence of 35 EhTMKB1 members on the basis of sequence identity (≥95%). Only six homologs were full length containing an extracellular domain, a transmembrane segment and an intracellular kinase domain. Reverse transcription followed by polymerase chain reaction (RT-PCR) of the kinase domain was used to generate a library of expressed sequences. Sequencing of randomly picked clones from this library revealed that about 95% of the clones were identical with a single member, EhTMKB1-9, in proliferating cells. On serum starvation, the relative number of EhTMKB1-9 derived sequences decreased with concomitant increase in the sequences derived from another member, EhTMKB1-18. The change in their relative expression was quantified by real time PCR. Northern analysis and RNase protection assay were used to study the temporal nature of EhTMKB1-9 expression after serum replenishment of starved cells. The results showed that the expression of EhTMKB1-9 was sinusoidal. Specific transcriptional induction of EhTMKB1-9 upon serum replenishment was further confirmed by reporter gene (luciferase) expression and the upstream sequence responsible for serum responsiveness was identified. EhTMKB1-9 is one of the first examples of an inducible gene in Entamoeba. The protein encoded by this member was functionally characterized. The recombinant kinase domain of EhTMKB1-9 displayed protein kinase activity. It is likely to have dual specificity as judged from its sensitivity to different kinase inhibitors. Immuno-localization showed EhTMKB1-9 to be a surface protein which decreased on serum starvation and got relocalized on serum replenishment. Cell lines expressing either EhTMKB1-9 without kinase domain, or EhTMKB1-9 antisense RNA, showed decreased cellular proliferation and target cell killing. Our results suggest that E. histolytica TMKs of B1 family are functional kinases likely to be involved in serum response and cellular proliferation
    corecore