1,200 research outputs found
In vitro selection and characterization of cellulose-binding DNA aptamers
Many nucleic acid enzymes and aptamers have modular architectures that allow them to retain their functions when combined with other nucleotide sequences. This modular function facilitates the engineering of RNAs and DNAs that have more complex functions. We sought to create new DNA aptamers that bind cellulose to provide a module for immobilizing DNAs. Cellulose has been used in a variety of applications ranging from coatings and films to pharmaceutical preparations, and therefore DNA aptamers that bind cellulose might enable new applications. We used in vitro selection to isolate aptamers from a pool of random-sequence DNAs and subjected two distinct clones to additional rounds of mutagenesis and selection. One aptamer (CELAPT 14) was chosen for sequence minimization and more detailed biochemical analysis. CELAPT 14 aptamer variants exhibit robust binding both to cellulose powder and paper. Also, an allosteric aptamer construct was engineered that exhibits ATP-mediated cellulose binding during paper chromatography
Influence of nano-mechanical properties on single electron tunneling: A vibrating Single-Electron Transistor
We describe single electron tunneling through molecular structures under the
influence of nano-mechanical excitations. We develop a full quantum mechanical
model, which includes charging effects and dissipation, and apply it to the
vibrating C single electron transistor experiment by Park {\em et al.}
{[Nature {\bf 407}, 57 (2000)].} We find good agreement and argue vibrations to
be essential to molecular electronic systems. We propose a mechanism to realize
negative differential conductance using local bosonic excitations.Comment: 7 pages, 6 figure
Thermoelectric effects in Kondo correlated quantum dots
In this Letter we study thermoelectric effects in ultra small quantum dots.
We study the behaviour of the thermopower, Peltier coefficient and thermal
conductance both in the sequencial tunneling regime and in the regime where
Kondo correlations develope. Both cases of linear response and non-equilibrium
induced by strong temperature gradients are considered. The thermopower is a
very sensitive tool to detect Kondo correlations. It changes sign both as a
function of temperature and temperature gradient. We also discuss violations of
the Wiedemann-Franz law.Comment: 7 pages; 5 figure
Mechanical Cooper pair transportation as a source of long distance superconducting phase coherence
Transportation of Cooper-pairs by a movable single Cooper-pair-box placed
between two remote superconductors is shown to establish coherent coupling
between them. This coupling is due to entanglement of the movable box with the
leads and is manifested in the supression of quantum fluctuations of the
relative phase of the order parameters of the leads. It can be probed by
attaching a high resistance Josephson junction between the leads and measuring
the current through this junction. The current is suppressed with increasing
temperature.Comment: 4 pages, 4 figures, RevTeX; Updated version, typos correcte
Thermopower of Kondo Effect in Single Quantum Dot Systems with Orbital at Finite Temperatures
We investigate the thermopower due to the orbital Kondo effect in a single
quantum dot system by means of the noncrossing approximation. It is elucidated
how the asymmetry of tunneling resonance due to the orbital Kondo effect
affects the thermopower under gate-voltage and magnetic-field control.Comment: 4 pages, 4 figures, proceeding of Second International Symposium on
Nanometer-Scale Quantum Physic
Phonon distributions of a single bath mode coupled to a quantum dot
The properties of an unconventional, single mode phonon bath coupled to a
quantum dot, are investigated within the rotating wave approximation. The
electron current through the dot induces an out of equilibrium bath, with a
phonon distribution qualitatively different from the thermal one. In selected
transport regimes, such a distribution is characterized by a peculiar selective
population of few phonon modes and can exhibit a sub-Poissonian behavior. It is
shown that such a sub-Poissonian behavior is favored by a double occupancy of
the dot. The crossover from a unequilibrated to a conventional thermal bath is
explored, and the limitations of the rotating wave approximation are discussed.Comment: 21 Pages, 7 figures, to appear in New Journal of Physics - Focus on
Quantum Dissipation in Unconventional Environment
Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria
AbstractRiboswitches are metabolite binding domains within certain messenger RNAs that serve as precision sensors for their corresponding targets. Allosteric rearrangement of mRNA structure is mediated by ligand binding, and this results in modulation of gene expression. We have identified a class of riboswitches that selectively recognizes guanine and becomes saturated at concentrations as low as 5 nM. In Bacillus subtilis, this mRNA motif is located on at least five separate transcriptional units that together encode 17 genes that are mostly involved in purine transport and purine nucleotide biosynthesis. Our findings provide further examples of mRNAs that sense metabolites and that control gene expression without the need for protein factors. Furthermore, it is now apparent that riboswitches contribute to the regulation of numerous fundamental metabolic pathways in certain bacteria
2,9,16,23-Tetrakis(1-methylethyl)-5,6,11,12,13,14,19,20,25,26,27,28-dodecadehydrotetrabenzo[a,e,k,o]cycloeicosene1
The title compound, C48H40, is a tetraisopropyl-substituted polyannulenoenyne. The unsubstituted polyannulenoenyne, C36H16 (CSD: RICVEE; CAS: 186494-87-1), has quasi-D
2 (222) symmetry, as determined by least-squares fit (excluding H atoms) to a model optimized in D
2 symmetry by molecular mechanics (r.m.s. deviation = 0.239 Å). The least-squares fits of 36 common C atoms of the title compound (at 90 K) to the parent (at 295 K) and to the optimized model show r.m.s. deviations of 0.419 and 0.426 Å, respectively
1,3-Difluorobenzene
The weak electrostatic and dispersive forces between C(δ+)—F(δ−) and H(δ+)—C(δ−) are at the borderline of the hydrogen-bond phenomenon and are poorly directional and further deformed in the presence of other dominant interactions, e.g. C—H⋯π. The title compound, C6H4F2, Z′ = 2, forms one-dimensional tapes along two homodromic C—H⋯F hydrogen bonds. The one-dimensional tapes are connected into corrugated two-dimensional sheets by further bi- or trifrucated C—H⋯F hydrogen bonds. Packing in the third dimension is controlled by C—H⋯π interactions
Engineering of an octupolar non-linear optical crystal: tribenzyl isocyanurate
The title compound has a C-H···O hydrogen bond-mediated trigonal network structure that leads to octupolar NLO behaviour in the solid state
- …