436 research outputs found

    Twenty first century standards for thermal comfort : fostering low carbon building design and operation

    Get PDF
    Nearly 50% of energy consumed in the developed world is consumed in buildings. Despite regulation intent, many new buildings are energy profligate. Thermal comfort standards are partly responsible for this increase in consumption. In this volume, Roaf et al. have described the evolution of current comfort standards and problems inherent in buildings they shape, and have discussed two new methods of regulating thermal comfort in buildings which recognize human adaptation and have potential for reduced energy demand. These new methods incorporate adaptation through a fixed heating and cooling threshold approach (similar to Japanese Cool-Biz) or through heating and cooling setpoints calculated based on outdoor conditions(using CEN standard equations). The impact on comfort and energy demand of these new approaches is investigated for a London office building. Variables such as future climate, future building upgrades, setback temperatures, internal gains and ventilation are also explored. Adoption of the new approaches gave a 50% reduction in heating and cooling energy for the simulated office. The new approach together with optimized setback temperatures, ventilation strategies and higher efficiency equipment gives predicted heating and cooling energy demand close to zero. Recommendations for future regulation, design and operation of buildings are proposed

    The ambivalence of personal control over indoor climate - how much personal control is adequate?

    Get PDF
    Literature sets personal control over indoor environmental conditions in relation to the gap between predicted and actual energy use, the gap between predicted and observed user satisfaction, and health aspects. A focus on building energy performance often leads to the proposal of more automated and less occupant control of the indoor environment. However, a high degree of personal control is desirable because research shows that a low degree (or no) personal control highly correlates with indoor environmental dissatisfaction and sick building syndrome symptoms. These two tendencies seem contradictory and optimisation almost impossible. Based on current efficiency classes describing the effect of room automation systems on building energy use during operation, fundamental thoughts related to thermophysiology and control, recent laboratory experiments, important lessons learnt from post-occupancy studies, and documented conceptual frameworks on the level of control perceived, we discuss the ambivalence of personal control and how much personal control is adequate. Often-proposed solutions ranging from fully automated controls, over manual controls to dummy controls are discussed according to their effect on a) building energy use during operation and b) occupants perceived control. The discussion points to the importance of adequate personal control. In order to meet the goals for nearly zero energy buildings and for a human-centric design, there is the need to establish design procedures for adequate personal control as part of the design process

    The ambivalence of personal control over indoor climate - How much personal control is adequate?

    Get PDF
    Literature sets personal control over indoor environmental conditions in relation to the gap between predicted and actual energy use, the gap between predicted and observed user satisfaction, and health aspects. A focus on building energy performance often leads to the proposal of more automated and less occupant control of the indoor environment. However, a high degree of personal control is desirable because research shows that a low degree (or no) personal control highly correlates with indoor environmental dissatisfaction and sick building syndrome symptoms. These two tendencies seem contradictory and optimisation almost impossible. Based on current efficiency classes describing the effect of room automation systems on building energy use during operation, fundamental thoughts related to thermophysiology and control, recent laboratory experiments, important lessons learnt from post-occupancy studies, and documented conceptual frameworks on the level of control perceived, we discuss the ambivalence of personal control and how much personal control is adequate. Often-proposed solutions ranging from fully automated controls, over manual controls to dummy controls are discussed according to their effect on a) building energy use during operation and b) occupants perceived control. The discussion points to the importance of adequate personal control. In order to meet the goals for nearly zero energy buildings and for a human-centric design, there is the need to establish design procedures for adequate personal control as part of the design process

    The potential of the adaptive thermal comfort concept in longterm actively conditioned buildings for improved energy performance and user wellbeing

    Get PDF
    Technological progress in conditioning practice combined with prevailing thermal comfort criteria, created stable, tightly controlled indoor temperature bands. Research shows indoor temperatures to be increasing in the heating period, leading to higher building energy use than planned. Field studies provide proof that occupants not in control of their indoor climate are more dissatisfied and report problems in wellbeing. Widening temperature bands could be an effective measure leading to energy conservation, increasing satisfaction and, as shown recently, helping to mitigate health problems related to our way of life. The adaptive approach to thermal comfort postulates that people\u27s thermal comfort perception adapts to the indoor and outdoor climatic conditions they normally experience. However, according to standards, the adaptive model is applicable only to passively conditioned (free-running) buildings, even though the adaptive principles may well apply also to actively conditioned buildings. Our review found studies demonstrating positive health effects and energy conservation potential in permanently or seasonally conditioned buildings. On this basis, the potential of the adaptive approach and translations into concrete design or operation solutions for actively conditioned buildings are discussed in this paper. We conclude that the adaptive concept offers a potential for indoor climate control in actively conditioned buildings in the temperate and cold climates
    • 

    corecore