1,854 research outputs found

    The Sensitivity of Auditory-Motor Representations to Subtle Changes in Auditory Feedback While Singing

    Get PDF
    Singing requires accurate control of the fundamental frequency (F0) of the voice. This study examined trained singers’ and untrained singers’ (nonsingers’) sensitivity to subtle manipulations in auditory feedback and the subsequent effect on the mapping between F0 feedback and vocal control. Participants produced the consonant-vowel /ta/ while receiving auditory feedback that was shifted up and down in frequency. Results showed that singers and nonsingers compensated to a similar degree when presented with frequency-altered feedback (FAF); however, singers’ F0 values were consistently closer to the intended pitch target. Moreover, singers initiated their compensatory responses when auditory feedback was shifted up or down 6 cents or more, compared to nonsingers who began compensating when feedback was shifted up 26 cents and down 22 cents. Additionally, examination of the first 50 ms of vocalization indicated that participants commenced subsequent vocal utterances, during FAF, near the F0 value on previous shift trials. Interestingly, nonsingers commenced F0 productions below the pitch target and increased their F0 until they matched the note. Thus, singers and nonsingers rely on an internal model to regulate voice F0, but singers’ models appear to be more sensitive in response to subtle discrepancies in auditory feedback

    Getting Its Kicks: A VLBA Parallax for the Hyperfast Pulsar B1508+55

    Full text link
    The highest velocity neutron stars establish stringent constraints on natal kicks, asymmetries in supernova core collapse, and the evolution of close binary systems. Here we present the first results of a long-term pulsar astrometry program using the VLBA. We measure a proper motion and parallax for the pulsar B1508+55, leading to model-independent estimates of its distance (2.37+0.23-0.20 kpc) and transverse velocity (1083+103-90 km/s), the highest velocity directly measured for a neutron star. We trace the pulsar back from its present Galactic latitude of 52.3 degrees to a birth site in the Galactic plane near the Cyg OB associations, and find that it will inevitably escape the Galaxy. Binary disruption alone is insufficient to impart the required birth velocity, and a natal kick is indicated. A composite scenario including a large kick along with binary disruption can plausibly account for the high velocity.Comment: 5 pages, including 2 figures; accepted by ApJL; associated NRAO press release at http://www.nrao.edu/pr/2005/fastpulsar

    Double Neutron Star Systems and Natal Neutron Star Kicks

    Get PDF
    We study the four double neutron star systems found in the Galactic disk in terms of the orbital characteristics of their immediate progenitors and the natal kicks imparted to neutron stars. Analysis of the effect of the second supernova explosion on the orbital dynamics, combined with recent results from simulations of rapid accretion onto neutron stars lead us to conclude that the observed systems could not have been formed had the explosion been symmetric. Their formation becomes possible if kicks are imparted to the radio-pulsar companions at birth. We identify the constraints imposed on the immediate progenitors of the observed double neutron stars and calculate the ranges within which their binary characteristics (orbital separations and masses of the exploding stars) are restricted. We also study the dependence of these limits on the magnitude of the kick velocity and the time elapsed since the second explosion. For each of the double neutron stars, we derive a minimum kick magnitude required for their formation, and for the two systems in close orbits we find it to exceed 200km/s. Lower limits are also set to the center-of-mass velocities of double neutron stars, and we find them to be consistent with the current proper motion observations.Comment: 25 pages, 6 figs (9 parts), 4 tables, AASTeX, Accepted in Ap

    Distributional Modes for Scalar Field Quantization

    Get PDF
    We propose a mode-sum formalism for the quantization of the scalar field based on distributional modes, which are naturally associated with a slight modification of the standard plane-wave modes. We show that this formalism leads to the standard Rindler temperature result, and that these modes can be canonically defined on any Cauchy surface.Comment: 15 pages, RevTe

    Оценка эффективности управления деятельностью предприятия

    Get PDF
    Целью исследования является оценка эффективности управления деятельностью предприятия как интегрального показателя, то есть управления совокупностью деятельностей, таких как производственная, инвестиционная, инновационная, маркетинговая и финансовая

    MiR-193b promotes autophagy and non-apoptotic cell death in oesophageal cancer cells

    Get PDF
    Background: Successful treatment of oesophageal cancer is hampered by recurrent drug resistant disease. We have previously demonstrated the importance of apoptosis and autophagy for the recovery of oesophageal cancer cells following drug treatment. When apoptosis (with autophagy) is induced, these cells are chemosensitive and will not recover following chemotherapy treatment. In contrast, when cancer cells exhibit only autophagy and limited Type II cell death, they are chemoresistant and recover following drug withdrawal. Methods: MicroRNA (miRNA) expression profiling of an oesophageal cancer cell line panel was used to identify miRNAs that were important in the regulation of apoptosis and autophagy. The effects of miRNA overexpression on cell death mechanisms and recovery were assessed in the chemoresistant (autophagy inducing) KYSE450 oesophageal cancer cells. Results: MiR-193b was the most differentially expressed miRNA between the chemosensitive and chemoresistant cell lines with higher expression in chemosensitive apoptosis inducing cell lines. Colony formation assays showed that overexpression of miR-193b significantly impedes the ability of KYSE450 cells to recover following 5-fluorouracil (5-FU) treatment. The critical mRNA targets of miR-193b are unknown but target prediction and siRNA data analysis suggest that it may mediate some of its effects through stathmin 1 regulation. Apoptosis was not involved in the enhanced cytotoxicity. Overexpression of miR-193b in these cells induced autophagic flux and non-apoptotic cell death. Conclusion: These results highlight the importance of miR-193b in determining oesophageal cancer cell viability and demonstrate an enhancement of chemotoxicity that is independent of apoptosis induction

    On the Theory of Gamma Ray Bursts and Hypernovae: The Black Hole Soft X-ray Transient Sources

    Get PDF
    We show that a common evolutionary history can produce the black hole binaries in the Galaxy in which the black holes have masses of ~ 5-10 M_sun. In with low-mass, <~ 2.5 M_sun, ZAMS (zero age main sequence) companions, the latter remain in main sequence during the active stage of soft X-ray transients (SXTs), most of them being of K or M classification. In two intermediate cases, IL Lupi and Nova Scorpii with ZAMS ~ 2.5 M_sun companions the orbits are greatly widened because of large mass loss in the explosion forming the black hole, and whereas these companions are in late main sequence evolution, they are close to evolving. Binaries with companion ZAMS masses >~ 3 M_sun are initially "silent" until the companion begins evolving across the Herzsprung gap. We provide evidence that the narrower, shorter period binaries, with companions now in main sequence, are fossil remnants of gamma ray bursters (GRBs). We also show that the GRB is generally accompanied by a hypernova explosion (a very energetic supernova explosion). We further show that the binaries with evolved companions are good models for some of the ultraluminous X-ray sources (ULXs) recently seen by Chandra in other galaxies. The great regularity in our evolutionary history, especially the fact that most of the companions of ZAMS mass <~ 2.5 M_sun remain in main sequences as K or M stars can be explained by the mass loss in common envelope evolution to be Case C; i.g., to occur only after core He burning has finished. Since our argument for Case C mass transfer is not generally understood in the community, we add an appendix, showing that with certain assumptions which we outline we can reproduce the regularities in the evolution of black hole binaries by Case C mass transfer.Comment: 59 pages, 12 figures, review articl
    corecore