9 research outputs found

    Neurologic phenotype of Schimke immuno-osseous dysplasia and neurodevelopmental expression of SMARCAL1

    No full text
    Schimke immuno-osseous dysplasia (OMIM 242900) is an uncommon autosomal-recessive multisystem disease caused by mutations in SMARCAL1 (swi/snf-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), a gene encoding a putative chromatin remodeling protein. Neurologic manifestations identified to date relate to enhanced atherosclerosis and cerebrovascular disease. Based on a clinical survey, we determined that half of Schimke immuno-osseous dysplasia patients have a small head circumference, and 15% have social, language, motor, or cognitive abnormalities. Postmortem examination of 2 Schimke immuno-osseous dysplasia patients showed low brain weights and subtle brain histologic abnormalities suggestive of perturbed neuron-glial migration such as heterotopia, irregular cortical thickness, incomplete gyral formation, and poor definition of cortical layers. We found that SMARCAL1 is highly expressed in the developing and adult mouse and human brain, including neural precursors and neuronal lineage cells. These observations suggest that SMARCAL1 deficiency may influence brain development and function in addition to its previously recognized effect on cerebral circulation

    Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression

    No full text
    Biallelic mutations of the DNA annealing helicase SMARCAL1 (SWI/SNF-related, matrix-associated, actindependent regulator of chromatin, subfamily a-like 1) cause Schimke immuno-osseous dysplasia (SIOD, MIM 242900), an incompletely penetrant autosomal recessive disorder. Using human, Drosophila and mouse models, we show that the proteins encoded by SMARCAL1 orthologs localize to transcriptionally active chromatin and modulate gene expression. We also show that, as found in SIOD patients, deficiency of the SMARCAL1 orthologs alone is insufficient to cause disease in fruit flies and mice, although such deficiency causes modest diffuse alterations in gene expression. Rather, disease manifests when SMARCAL1 deficiency interacts with genetic and environmental factors that further alter gene expression. We conclude that the SMARCAL1 annealing helicase buffers fluctuations in gene expression and that alterations in gene expression contribute to the penetrance of SIOD

    Lack of IL7R alpha expression in T cells is a hallmark of T-cell immunodeficiency in Schimke immuno-osseous dysplasia (SIOD)

    No full text
    Schimke immuno-osseous dysplasia (SIOD) is an autosomal recessive, fatal childhood disorder associated with skeletal dysplasia, renal dysfunction, and T-cell immunodeficiency. This disease is linked to biallelic loss-of-function mutations of the SMARCAL1 gene. Although recurrent infection, due to T-cell deficiency, is a leading cause of morbidity and mortality, the etiology of the T-cell immunodeficiency is unclear. Here, we demonstrate that the T cells of SIOD patients have undetectable levels of protein and mRNA for the IL-7 receptor alpha chain (IL7R alpha) and are unresponsive to stimulation with IL-7, indicating a loss of functional receptor. No pathogenic mutations were detected in the exons of IL7R in these patients; however, CpG sites in the IL7R promoter were hypermethylated in SIOD T cells. We propose therefore that the lack of IL7R alpha expression, associated with hypermethylation of the IL7R promoter, in T cells and possibly their earlier progenitors, restricts T-cell development in SIOD patients. (C) 2015 Elsevier Inc. All rights reserved

    Complex Compound Inheritance of Lethal Lung Developmental Disorders Due to Disruption of the TBX-FGF Pathway

    No full text
    Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping similar to 2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.Genetics of disease, diagnosis and treatmen
    corecore