1,136 research outputs found

    Returns to Mobility in the Transition to a Market Economy

    Full text link
    In spite of ongoing dramatic changes in labor market structure, transitional economies display rather low worker flows across sectors and occupations. Such low mobility can be explained by low returns to job changes as well as by market segmentation in the allocation of job offers. We develop an econometric model which enables us to characterize intertemporal changes in probabilities of dismissal, remuneration, and offer arrival rates on the basis of information on observed transitions and wage payments. The model is estimated using data from the Polish Labor Force Survey. Our results indicate a significant degree of segmentation in the allocation of job offers and more stability in public sector versus private sector jobs. Our model can also be used for policy experiments. In particular, we infer that reductions of 10 per cent in the generosity of unemployment benefits will not significantly boost outflows from the unemployment state. These findings support explanations for low mobility in transitional economies, which are based on informational failures, and high costs of moving from public to private enterprises for those with high levels of job tenure and labor market experience in the public sector.http://deepblue.lib.umich.edu/bitstream/2027.42/39604/2/wp217.pd

    Returns to Mobility in the Transition to a Market Economy

    Get PDF
    In spite of ongoing dramatic changes in labor market structure, transitional economies display rather low worker flows across sectors and occupations. Such low mobility can be explained by low returns to job changes as well as by market segmentation in the allocation of job offers. We develop an econometric model which enables us to characterize intertemporal changes in probabilities of dismissal, remuneration, and offer arrival rates on the basis of information on observed transitions and wage payments. The model is estimated using data from the Polish Labor Force Survey. Our results indicate a significant degree of segmentation in the allocation of job offers and more stability in public sector versus private sector jobs. Our model can also be used for policy experiments. In particular, we infer that reductions of 10 per cent in the generosity of unemployment benefits will not significantly boost outflows from the unemployment state. These findings support explanations for low mobility in transitional economies, which are based on informational failures, and high costs of moving from public to private enterprises for those with high levels of job tenure and labor market experience in the public sector.worker flows, returns to mobility, market segmentation

    Specific Heat of the Ca-Intercalated Graphite Superconductor CaC6_6

    Full text link
    The superconducting state of Ca-intercalated graphite CaC6 has been investigated by specific heat measurements. The characteristic anomaly at the superconducting transition (Tc = 11.4 K) indicates clearly the bulk nature of the superconductivity. The temperature and magnetic field dependence of the electronic specific heat are consistent with a fully-gapped superconducting order parameter. The estimated electron-phonon coupling constant is lambda = 0.60 - 0.74 suggesting that the relatively high Tc of CaC6 can be explained within the weak-coupling BCS approach.Comment: 4 pages, 4 figs, submitted to Phys. Rev. Let

    Superconductivity in Heavy Alkaline-Earths Intercalated Graphites

    Full text link
    We report the discovery of superconductivity below 1.65(6) K in Sr-intercalated graphite SrC6, by susceptibility and specific heat (Cp) measurements. In comparison with CaC6, we found that the anisotropy of the upper critical fields for SrC6 is much reduced. The Cp anomaly at Tc is smaller than the BCS prediction indicating an anisotropic superconducting gap for SrC6 similar to CaC6. The significantly lower Tc of SrC6 as compared to CaC6 can be understood in terms of "negative" pressure effects, which decreases the electron-phonon coupling for both in-plane intercalant and the out-of-plane C phonon modes. We observed no superconductivity for BaC6 down to 0.3 K.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Linear response separation of a solid into atomic constituents: Li, Al, and their evolution under pressure

    Full text link
    We present the first realization of the generalized pseudoatom concept introduced by Ball, and adopt the name enatom to minimize confusion. This enatom, which consists of a unique decomposition of the total charge density (or potential) of any solid into a sum of overlapping atomiclike contributions that move rigidly with the nuclei to first order, is calculated using (numerical) linear response methods, and is analyzed for both fcc Li and Al at pressures of 0, 35, and 50 GPa. These two simple fcc metals (Li is fcc and a good superconductor in the 20-40 GPa range) show different physical behaviors under pressure, which reflects the increasing covalency in Li and the lack of it in Al. The nonrigid (deformation) parts of the enatom charge and potential have opposite signs in Li and Al; they become larger under pressure only in Li. These results establish a method of construction of the enatom, whose potential can be used to obtain a real-space understanding of the vibrational properties and electron-phonon interaction in solids.Comment: 13 pages, 9 figures, 1 table, V2: fixed problem with Fig. 7, V3: minor correction

    Gutzwiller theory of band magnetism in LaOFeAs

    Full text link
    We use the Gutzwiller variational theory to calculate the ground-state phase diagram and quasi-particle bands of LaOFeAs. The Fe3d--As4p Wannier-orbital basis obtained from density-functional theory defines the band part of our eight-band Hubbard model. The full atomic interaction between the electrons in the iron orbitals is parameterized by the Hubbard interaction U and an average Hund's-rule interaction J. We reproduce the experimentally observed small ordered magnetic moment over a large region of (U,J) parameter space. The magnetically ordered phase is a stripe spin-density wave of quasi-particles.Comment: 4 pages, 5 figure

    Functional renormalization group study of an eight-band model for the iron arsenides

    Full text link
    We investigate the superconducting pairing instabilities of eight-band models for the iron arsenides. Using a functional renormalization group treatment, we determine how the critical energy scale for superconductivity depends on the electronic band structure. Most importantly, if we vary the parameters from values corresponding to LaFeAsO to SmFeAsO, the pairing scale is strongly enhanced, in accordance with the experimental observation. We analyze the reasons for this trend and compare the results of the eight-band approach to those found using five-band models.Comment: 11 pages, 10 figure

    Effect of Pressure on Superconducting Ca-intercalated Graphite CaC6_6

    Full text link
    The pressure effect on the superconducting transition temperature (TcT_c) of the newly-discovered Ca-intercalated graphite compound CaC6_6 has been investigated up to \sim 16 kbar. TcT_c is found to increase under pressure with a large relative ratio Δ\DeltaTcT_c/TcT_c of \approx +0.4 %/kbar. Using first-principles calculations, we show that the large and positive effect of pressure on TcT_c can be explained in the scope of electron-phonon theory due to the presence of a soft phonon branch associated to in-plane vibrations of Ca atoms. Implications of the present findings on the current debate about the superconducting mechanism in graphite intercalation compounds are discussed.Comment: 6 pages, 5 figs, final PRB versio

    The challenge of unravelling magnetic properties in LaFeAsO

    Full text link
    First principles calculations of magnetic and, to a lesser extent, electronic properties of the novel LaFeAsO-based superconductors show substantial apparent controversy, as opposed to most weakly or strongly correlated materials. Not only do different reports disagree about quantitative values, there is also a schism in terms of interpreting the basic physics of the magnetic interactions in this system. In this paper, we present a systematic analysis using four different first principles methods and show that while there is an unusual sensitivity to computational details, well-converged full-potential all-electron results are fully consistent among themselves. What makes results so sensitive and the system so different from simple local magnetic moments interacting via basic superexchange mechanisms is the itinerant character of the calculated magnetic ground state, where very soft magnetic moments and long-range interactions are characterized by a particular structure in the reciprocal (as opposed to real) space. Therefore, unravelling the magnetic interactions in their full richness remains a challenging, but utterly important task

    Inelastic x-ray scattering investigations of lattice dynamics in SmFeAsO1x_{1-x}Fy_y superconductors

    Full text link
    We report measurements of the phonon density of states as measured with inelastic x-ray scattering in SmFeAsO1x_{1-x}Fy_y powders. An unexpected strong renormalization of phonon branches around 23 meV is observed as fluorine is substituted for oxygen. Phonon dispersion measurements on SmFeAsO1x_{1-x}Fy_y single crystals allow us to identify the 21 meV A1g_{1g} in-phase (Sm,As) and the 26 meV B1g_{1g} (Fe,O) modes to be responsible for this renormalization, and may reveal unusual electron-phonon coupling through the spin channel in iron-based superconductors.Comment: 4 pages, 3 figures, submitted for SNS2010 conference proceeding
    corecore