1,094 research outputs found

    Accounting for spin fluctuations beyond LSDA in the density functional theory

    Full text link
    We present a method to correct the magnetic properties of itinerant systems in local spin density approximation (LSDA) and we apply it to the ferromagnetic-paramagnetic transition under pressure in a typical itinerant system, Ni3_{3}Al. We obtain a scaling of the critical fluctuations as a function of pressure equivalent to the one obtained within Moryia's theory. Moreover we show that in this material the role of the bandstructure is crucial in driving the transition. Finally we calculate the magnetic moment as a function of pressure, and find that it gives a scaling of the Curie temperature that is in good agreement with the experiment. The method can be easily extended to the antiferromagnetic case and applied, for instance, to the Fe-pnictides in order to correct the LSDA magnetic moment.Comment: 7 pages, 4 figure

    Effects of magnetism and doping on the electron-phonon coupling in BaFe2_{2}As2_{2}

    Full text link
    We calculate the effect of local magnetic moments on the electron-phonon coupling in BaFe2_{2}As2+δ_{2}+\delta using the density functional perturbation theory. We show that the magnetism enhances the total electron-phonon coupling by ∼50\sim 50%, up to λ≲0.35\lambda \lesssim 0.35, still not enough to explain the high critical temperature, but strong enough to have a non-negligible effect on superconductivity, for instance, by frustrating the coupling with spin fluctuations and inducing order parameter nodes. The enhancement comes mostly from a renormalization of the electron-phonon matrix elements. We also investigate, in the rigid band approximation, the effect of doping, and find that λ\lambda versus doping does not mirror the behavior of the density of states; while the latter decreases upon electron doping, the former does not, and even increases slightly.Comment: 4 pages, 3 figure

    In medio stat victus: Labor Demand Effects of an Increase in the Retirement Age

    Get PDF
    After falling for four decades, statutory retirement ages are increasing in most OECD countries. The labor market adjustment to these reforms has not yet been thoroughly investigated by the literature. We draw on a major pension reform that took place in Italy in December 2011 that increased the retirement age by up to six years for some categories of workers. We have access to a unique dataset validated by the Italian social security administration (INPS), which identifies in each private firm, based on an administrative exam of eligibility conditions, how many workers were locked in by the sudden increase in the retirement age, and for how long. We find that firms mostly affected by the lock in are those that were downsizing even before the policy shock. The increase in the retirement age seems to displace more middle-aged workers than young workers. Furthermore, there is not a one-to-one increase in the number of older workers in the firms where some workers were locked in by the reform. We provide tentative explanations for these results, based on the interaction between retirement, employment protection legislation and liquidity constraints of firms

    Energy Gaps and Kohn Anomalies in Elemental Superconductors

    Full text link
    The momentum and temperature dependence of the lifetimes of acoustic phonons in the elemental superconductors Pb and Nb was determined by resonant spin-echo spectroscopy with neutrons. In both elements, the superconducting energy gap extracted from these measurements was found to converge with sharp anomalies originating from Fermi-surface nesting (Kohn anomalies) at low temperatures. The results indicate electron many-body correlations beyond the standard theoretical framework for conventional superconductivity. A possible mechanism is the interplay between superconductivity and spin- or charge-density-wave fluctuations, which may induce dynamical nesting of the Fermi surface

    Momentum-resolved electron-phonon interaction in lead determined by neutron resonance spin-echo spectroscopy

    Get PDF
    Neutron resonance spin-echo spectroscopy was used to monitor the temperature evolution of the linewidths of transverse acoustic phonons in lead across the superconducting transition temperature, TcT_c, over an extended range of the Brillouin zone. For phonons with energies below the superconducting energy gap, a linewidth reduction of maximum amplitude ∼6μ\sim 6 \mueV was observed below TcT_c. The electron-phonon contribution to the phonon lifetime extracted from these data is in satisfactory overall agreement with {\it ab-initio} lattice-dynamical calculations, but significant deviations are found

    Structural origin of the anomalous temperature dependence of the local magnetic moments in the CaFe2_{2}As2_{2} family of materials

    Full text link
    We report a combination of Fe Kβ\beta x-ray emission spectroscopy and abab-intio calculations to investigate the correlation between structural and magnetic degrees of freedom in CaFe2_{2}(As1−x_{1-x}Px_{x} )2_{2}. The puzzling temperature behavior of the local moment found in rare earth-doped CaFe2_{2}As2_{2} [\textit{H. Gretarsson, et al., Phys. Rev. Lett. {\bf 110}, 047003 (2013)}] is also observed in CaFe2_{2}(As1−x_{1-x}Px_{x})2_{2}. We explain this phenomenon based on first-principles calculations with scaled magnetic interaction. One scaling parameter is sufficient to describe quantitatively the magnetic moments in both CaFe2_{2}(As1−x_{1-x}Px_{x} )2_{2} (x=0.055x=0.055) and Ca0.78_{0.78}% La0.22_{0.22}Fe2_{2}As2_{2} at all temperatures. The anomalous growth of the local moments with increasing temperature can be understood from the observed large thermal expansion of the cc-axis lattice parameter combined with strong magnetoelastic coupling. These effects originate from the strong tendency to form As-As dimers across the Ca layer in the CaFe2_{2}As2_{2} family of materials. Our results emphasize the dual local-itinerant character of magnetism in Fe pnictides

    Possibility of Unconventional Pairing Due to Coulomb Interaction in Fe-Based Pnictide Superconductors: Perturbative Analysis of Multi-Band Hubbard Models

    Full text link
    Possibility of unconventional pairing due to Coulomb interaction in iron-pnictide superconductors is studied by applying a perturbative approach to realistic 2- and 5-band Hubbard models. The linearized Eliashberg equation is solved by expanding the effective pairing interaction perturbatively up to third order in the on-site Coulomb integrals. The numerical results for the 5-band model suggest that the eigenvalues of the Eliashberg equation are sufficiently large to explain the actual high Tc for realistic values of Coulomb interaction and the most probable pairing state is spin-singlet s-wave without any nodes just on the Fermi surfaces, although the superconducting order parameter changes its sign between the small Fermi pockets. On the other hand the 2-band model is quite insufficient to explain the actual high Tc.Comment: 2 pages, 3 figures. Proceedings of the Intl. Symposium on Fe-Oxypnictide Superconductors (Tokyo, 28-29th June 2008

    Magnetism and Superconductivity in the Two-Dimensional 16 Band d-p Model for Iron-Based Superconductors

    Full text link
    The electronic states of the Fe2As2 plane in iron-based superconductors are investigated on the basis of the two-dimensional 16-band d-p model which includes the Coulomb interaction on a Fe site: the intra- and inter-orbital direct terms U and U', the Hund's coupling J and the pair-transfer J'. Using the random phase approximation (RPA), we obtain the magnetic phase diagram including the stripe and the incommensurate order on the U'-J plane. We also solve the superconducting gap equation within the RPA and find that, for large J, the most favorable pairing symmetry is extended s-wave whose order parameter changes its sign between the hole pockets and the electron pockets, while it is dxy-wave for small J.Comment: 4 pages, 5 figure
    • …
    corecore