1,438 research outputs found

    Electrical rotary joint apparatus for large space structures

    Get PDF
    A structural array and electrical rotary joint for transmitting an electrical power between large space structures having relative rotational movement is disclosed which includes large support framework structures which rotate relative to one another about a common axis of rotation. A rotary interface joint is defined between the structures. A cylindrical hub member is carried by one structure and a cylindrical hub member is carried by a support structure with a third hub member being concentrically within a fourth hub member for relative rotation. Tension connecting cables connect hub members with their associated outer structures whereby relative rotational movement between the structures is transmitted to the cylindrical hub members for unitary motion therewith. Electrical conductor brush members are carried by one hub and electrical contact rings are carried by another hub member in sliding electrical contact with the brushes for transmission of electrical power during relative rotational movement between the two support structures

    Assessment of the Impact of the Premarital Interpersonal Choices and Knowledge (PICK) Program on Adolescents

    Get PDF
    This study was conducted to determine if the information from the Premarital Interpersonal Choices and Knowledge (PICK) program How to Avoid Falling for a Jerk/ette helped positively change adolescents’ attitudes about relationships. The program was taught to 9,130 high school students (ages 14 -18) from 35 different high schools in a Western state. Surveys were given at the beginning of the first class (pretest) and at the end of the final class (posttest). In addition to demographic information, students rated (1) their attitudes about what it takes to get to know a potential partner, (2) their belief that love alone is enough to sustain a relationship, (3) statements endorsing controlling relationship attitudes, and (4) how to pace a relationship in healthy ways. Pretest and posttest score averages were calculated, then compared statistically to determine if teen attitudes had changed in light of the information they learned in the class. Results showed significant change in all four measures, suggesting that the information taught in the class was associated with positively influencing participants’ relationship attitudes

    Using coherent dynamics to quantify spin-coupling within triplet-exciton/polaron complexes in organic diodes

    Full text link
    Quantifying the spin-spin interactions which influence electronic transitions in organic semiconductors is crucial for understanding their magneto-optoelectronic properties. By combining a theoretical model for three spin interactions in the coherent regime with pulsed electrically detected magnetic resonance experiments on MEH-PPV diodes, we quantify the spin-coupling within complexes comprising three spin-half particles. We determine that these particles form triplet-exciton:polaron pairs, where the polaron:exciton exchange is over 5 orders of magnitude weaker (less than 170 MHz) than that within the exciton. This approach providing a direct spectroscopic approach for distinguishing between coupling regimens, such as strongly bound trions, which have been proposed to occur in organic devices.Comment: 5 pages, 4 figure

    The fast reactor cell code KAPER4

    Get PDF

    Characterization of Iridium Coated Rhenium Used in High-Temperature, Radiation-Cooled Rocket Thrusters

    Get PDF
    Materials used for radiation-cooled rocket thrusters must be capable of surviving under extreme conditions of high-temperatures and oxidizing environments. While combustion efficiency is optimized at high temperatures, many refractory metals are unsuitable for thruster applications due to rapid material loss from the formation of volatile oxides. This process occurs during thruster operation by reaction of the combustion products with the material surface. Aerojet Technical Systems has developed a thruster cone chamber constructed of Re coated with Ir on the inside surface where exposure to the rocket exhaust occurs. Re maintains its structural integrity at high temperature and the Ir coating is applied as an oxidation barrier. Ir also forms volatile oxide species (IrO2 and IrO3) but at a considerably slower rate than Re. In order to understand the performance limits of Ir-coated Re thrusters, we are investigating the interdiffusion and oxidation kinetics of Ir/Re. The formation of iridium and rhenium oxides has been monitored in situ by Raman spectroscopy during high temperature exposure to oxygen. For pure Ir, the growth of oxide films as thin as approximately 200 A could be easily detected and the formation of IrO2 was observed at temperatures as low as 600 C. Ir/Re diffusion test specimens were prepared by magnetron sputtering of Ir on Re substrates. Concentration profiles were determined by sputter Auger depth profiles of the heat treated specimens. Significant interdiffusion was observed at temperatures as low as 1000 C. Measurements of the activation energy suggest that below 1350 C, the dominant diffusion path is along defects, most likely grain boundaries, rather than bulk diffusion through the grains. The phases that form during interdiffusion have been examined by x ray diffraction. Analysis of heated test specimens indicates that the Ir-Re reaction produces a solid solution phase of Ir dissolved in the HCP structure of Re

    Analytical description of spin-Rabi oscillation controlled electronic transitions rates between weakly coupled pairs of paramagnetic states with S=1/2

    Full text link
    We report on an analytical description of spin-dependent electronic transition rates which are controlled by a radiation induced spin-Rabi oscillation of weakly spin-exchange and spin-dipolar coupled paramagnetic states (S=1/2). The oscillation components (the Fourier content) of the net transition rates within spin-pair ensembles are derived for randomly distributed spin resonances with account of a possible correlation between the two distributions that correspond to the two individual pair partners. The results presented here show that when electrically or optically detected Rabi spectroscopy is conducted under an increasing driving field B_ 1, the Rabi spectrum evolves from a single resonance peak at s=\Omega_R, where \Omega_R=\gamma B_1 is the Rabi frequency (\gamma is the gyromagnetic ratio), to three peaks at s= \Omega_R, s=2\Omega_R, and at low s<< \Omega_R. The crossover between the two regimes takes place when \Omega_R exceeds the expectation value \delta_0 of the difference of the Zeeman energies within the pairs, which corresponds to the broadening of the magnetic resonance lines in the presence of disorder caused by hyperfine field or distributions of Lande g-factors. We capture this crossover by analytically calculating the shapes of all three peaks at arbitrary relation between \Omega_R and \delta_0. When the peaks are well-developed their widths are \Delta s ~ \delta_0^2/\Omega_R.Comment: 10 page, 5 figure

    Fast nuclear spin hyperpolarization of phosphorus in silicon

    Get PDF
    Journal ArticleWe experimentally demonstrate a method for obtaining nuclear spin hyperpolarization, that is, polarization significantly in excess of that expected at thermal equilibrium. By exploiting a nonequilibrium Overhauser process, driven by white light irradiation, we obtain more than 68% negative nuclear polarization of phosphorus donors in silicon. This polarization is reached with a time constant of ~150 sec, at a temperature of 1.37 K and a magnetic field of 8.5 T. The ability to obtain such large polarizations is discussed with regards to its significance for quantum information processing and magnetic resonance imaging

    Electrical detection of 31P spin quantum states

    Get PDF
    In recent years, a variety of solid-state qubits has been realized, including quantum dots, superconducting tunnel junctions and point defects. Due to its potential compatibility with existing microelectronics, the proposal by Kane based on phosphorus donors in Si has also been pursued intensively. A key issue of this concept is the readout of the P quantum state. While electrical measurements of magnetic resonance have been performed on single spins, the statistical nature of these experiments based on random telegraph noise measurements has impeded the readout of single spin states. In this letter, we demonstrate the measurement of the spin state of P donor electrons in silicon and the observation of Rabi flops by purely electric means, accomplished by coherent manipulation of spin-dependent charge carrier recombination between the P donor and paramagnetic localized states at the Si/SiO2 interface via pulsed electrically detected magnetic resonance. The electron spin information is shown to be coupled through the hyperfine interaction with the P nucleus, which demonstrates the feasibility of a recombination-based readout of nuclear spins

    Electrical detection of coherent 31P spin quantum states

    Get PDF
    ManuscriptIn recent years, a variety of solid-state qubits has been realized, including quantum dots [1, 2], superconducting tunnel junctions [3, 4] and point defects [5, 6]. Due to its potential compatibility with existing microelectronics, the proposal by Kane [7, 8] based on phosphorus donors in Si has also been pursued intensively [9, 10, 11]. A key issue of this concept is the readout of the 31P quantum state. While electrical measurements of magnetic resonance have been performed on single spins [12, 13], the statistical nature of these experiments based on random telegraph noise measurements has impeded the readout of single spin states. In this letter, we demonstrate the measurement of the spin state of 31P donor electrons in silicon and the observation of Rabi flops by purely electric means, accomplished by coherent manipulation of spin-dependent charge carrier recombination between the 31P donor and paramagnetic localized states at the Si/SiO2 interface via pulsed electrically detected magnetic resonance. The electron spin information is shown to be coupled through the hyperfine interaction with the 31P nucleus, which demonstrates the feasibility of a recombination- based readout of nuclear spins
    • …
    corecore