6,935 research outputs found
Cosmological constraints on Neutrino - Dark Matter interactions
I summarize the results of a recent analysis where the cosmological effects
of interactions of neutrinos with cold Dark Matter (DM) is investigated. This
interaction produces diffusion-damped oscillations in the matter power
spectrum, analogous to the acoustic oscillations in the baryon-photon fluid. I
discuss the bounds from the Sloan Digital Sky Survey on the corresponding
opacity defined as the ratio of neutrino-DM scattering cross section over DM
mass, and compare with the constraint from observation of neutrinos from
supernova 1987A.Comment: Talk given at the Neutrino Oscillation Workshop NOW2006, Otranto,
Italy, September 9-16 200
Emission lines in the long period Cepheid l Carinae
For the Cepheid (l) Carinae with a pulsation period of 35.5 days we have studied the emission line fluxes as a function of pulsational phase in order to find out whether we see chromosphere and transition layer emission or whether we see emission due to an outward moving shock. All emission lines show a steep increase in flux shortly before maximum light suggestive of a shock moving through the surface layers. The large ratio of the C IV to C II line fluxes shows that these are not transition layer lines. During maximum light the large ratio of the C IV to C II line fluxes also suggests that we see emission from a shock with velocities greater than 100 km/sec such that C IV emission can be excited. With such velocities mass outflow appears possible. The variations seen in the Mg II line profiles show that there is an internal absorption over a broad velocity band independent of the pulsational phase. We attribute this absorption to a circumstellar 'shell'. This 'shell' appears to be seen also as spatially extended emission in the O I line at 1300 angstrom, which is probably excited by resonance with Ly beta
Spin-wave spectrum of copper metaborate in the commensurate phase 10K<T<21K
We have investigated the spin-wave spectrum of copper metaborate,
CuBO, by means of inelastic neutron scattering in the commensurate
magnetic phase. We have found two branches of spin-wave excitations associated
with the two magnetic sublattices Cu(A) and Cu(B), respectively. In the
temperature regime , where only the Cu(A) magnetic moments
are ordered, the interaction between the two sublattices is found to be
negligible. With this approximation we have determined the `easy plane'
exchange parameters of the Cu(A) subsystem within standard spin-wave theory.Comment: 4 figure
Light spin-1/2 or spin-0 Dark Matter particles
We recall and precise how light spin-0 particles could be acceptable Dark
Matter candidates, and extend this analysis to spin-1/2 particles. We evaluate
the (rather large) annihilation cross sections required, and show how they may
be induced by a new light neutral spin-1 boson U. If this one is vectorially
coupled to matter particles, the (spin-1/2 or spin-0) Dark Matter annihilation
cross section into e+e- automatically includes a v_dm^2 suppression factor at
threshold, as desirable to avoid an excessive production of gamma rays from
residual Dark Matter annihilations. We also relate Dark Matter annihilations
with production cross sections in e+e- scatterings. Annihilation cross sections
of spin-1/2 and spin-0 Dark Matter particles are given by exactly the same
expressions. Just as for spin-0, light spin-1/2 Dark Matter particles
annihilating into e+e- could be responsible for the bright 511 keV gamma ray
line observed by INTEGRAL from the galactic bulge.Comment: 10 page
Regulation of neuronal ion channels via P2Y receptors
Within the last 15Â years, at least 8 different G protein-coupled P2Y receptors have been characterized. These mediate slow metabotropic effects of nucleotides in neurons as well as non-neural cells, as opposed to the fast ionotropic effects which are mediated by P2X receptors. One class of effector systems regulated by various G protein-coupled receptors are voltage-gated and ligand-gated ion channels. This review summarizes the current knowledge about the modulation of such neuronal ion channels via P2Y receptors. The regulated proteins include voltage-gated Ca2+ and K+ channels, as well as N-methyl-d-aspartate, vanilloid, and P2X receptors, and the regulating entities include most of the known P2Y receptor subtypes. The functional consequences of the modulation of ion channels by nucleotides acting at pre- or postsynaptic P2Y receptors are changes in the strength of synaptic transmission. Accordingly, ATP and related nucleotides may act not only as fast transmitters (via P2X receptors) in the nervous system, but also as neuromodulators (via P2Y receptors). Hence, nucleotides are as universal transmitters as, for instance, acetylcholine, glutamate, or Îł-aminobutyric acid
Spin dynamics in copper metaborate studied by muon spin relaxation
Copper metaborate CuBO was studied by muon spin relaxation
measurements in order to clarify its static and dynamic magnetic properties.
The time spectra of muon spin depolarization suggest that the local fields at
the muon site contain both static and fluctuating components in all ordered
phases down to 0.3 K. In the weak ferromagnetic phase (20 K~~9.3 K), the
static component is dominant. On the other hand, upon cooling the fluctuating
component becomes dominant in the incommensurate helix phase (9.3K > T > 1.4K).
The dynamical fluctuations of the local fields persist down to 0.3K, where a
new incommensurate phase (T < 1.4K) is expected to appear. This result suggests
that spins fluctuate even at T \to 0. We propose two possible origins of the
remnant dynamical spin fluctuations: frustration of the exchange interactions
and the dynamic behavior of the soliton lattice
Casimir interactions in graphene systems
The non-retarded Casimir interaction (van der Waals interaction) between two
free standing graphene sheets as well as between a graphene sheet and a
substrate is determined. An exact analytical expression is given for the
dielectric function of graphene along the imaginary frequency axis within the
random phase approximation for arbitrary frequency, wave vector, and doping.Comment: 4 pages, 4 figure
Historical roots of Agile methods: where did “Agile thinking” come from?
The appearance of Agile methods has been the most noticeable change to software process thinking in the last fifteen years [16], but in fact many of the “Agile ideas” have been around since 70’s or even before. Many studies and reviews have been conducted about Agile methods which ascribe their emergence as a reaction against traditional methods. In this paper, we argue that although Agile methods are new as a whole, they have strong roots in the history of software engineering. In addition to the iterative and incremental approaches that have been in use since 1957 [21], people who criticised the traditional methods suggested alternative approaches which were actually Agile ideas such as the response to change, customer involvement, and working software over documentation. The authors of this paper believe that education about the history of Agile thinking will help to develop better understanding as well as promoting the use of Agile methods. We therefore present and discuss the reasons behind the development and introduction of Agile methods, as a reaction to traditional methods, as a result of people's experience, and in particular focusing on reusing ideas from histor
- …