312 research outputs found
Geochemistry of Precordillera serpentinites, western Argentina : evidence for multistage hydrothermal alteration and tectonic implications for the Neoproterozoic-early Paleozoic
Serpentinites are a powerful tool to evaluate mantle composition and subsequent alteration processes during their tectonic emplacement. Exposures of this type of rocks can be found in the Argentine Precordillera (Cuyania terrane) and Frontal Cordillera, both located in central-western Argentina, within the Central Andes. In these regions a Neoproterozoic to Devonian mafic-ultramafic belt composed of serpentinites, metabasaltic dikes/sills, pillow lavas (with an Enriched to Normal Mid-Ocean Ridge Basalts (E- to N-MORB) geochemical signature) and mafic granulites crop out, spatially associated with marine metasedimentary rocks. The serpentinite bodies consist of lizardite/chrysotile+brucite+magnetite, with scarce pentlandite and anhedral reddish-brown Cr-spinel (picotite, pleonaste and spinel sensu stricto) as relict magmatic phases. The original peridotites were moderately-depleted harzburgites (ultramafic cumulates) with an intermediate chemical signature between a mid-ocean ridge and an arc-related ophiolite. Whole-rock Rare Earth Elements (REE) patterns of serpentinites exhibit enriched REE patterns ((La/Yb)CN=13-59) regarding CI chondrite with positive Eu anomalies. These features are the result of an interaction between hydrothermal fluid and serpentinites, in which moderate temperature (350Âș-400ÂșC), CO2-rich, mildly basic hydrothermal fluid was involved and was responsible for the addition of Ca, Sr and REE to serpentinites. The presence of listvenites (silica-carbonate rocks) in the serpentinite margins allow us to infer another fluid metasomatism, where lowtemperatures (<250ÂșC), highly-oxidized, highly-acid fluid lead to the precipitation of silica. The association of these metasomatized serpentinite bodies with neoproterozoic continental margin sucessions and MORB magmatism at the suture zone of the Cuyania and Chilenia terranes suggests the development of an oceanic basin between them during the Neoproterozoic-early Paleozoic
Theory-based scaling laws of near and far scrape-off layer widths in single-null L-mode discharges
Theory-based scaling laws of the near and far scrape-off layer (SOL) widths
are analytically derived for L-mode diverted tokamak discharges by using a
two-fluid model. The near SOL pressure and density decay lengths are obtained
by leveraging a balance among the power source, perpendicular turbulent
transport across the separatrix, and parallel losses at the vessel wall, while
the far SOL pressure and density decay lengths are derived by using a model of
intermittent transport mediated by filaments. The analytical estimates of the
pressure decay length in the near SOL is then compared to the results of
three-dimensional, flux-driven, global, two-fluid turbulence simulations of
L-mode diverted tokamak plasmas, and validated against experimental
measurements taken from an experimental multi-machine database of divertor heat
flux profiles, showing in both cases a very good agreement. Analogously, the
theoretical scaling law for the pressure decay length in the far SOL is
compared to simulation results and to experimental measurements in TCV L-mode
discharges, pointing out the need of a large multi-machine database for the far
SOL decay lengths
Recommended from our members
Plasma pressure and flows during divertor detachment
MHD theory applied to tokamak plasma scrape-off layer (SOL) equilibria requires Pfirsch-Schlueter current, which, because the magnetic lines are open, normally closes through electrically conducting divertor or limiter components. During detached divertor operation the Pfirsch-Schlueter current path to the divertor target is sometimes blocked, in which case theory predicts that the plasma develops a poloidal pressure gradient around the upstream SOL and a corresponding parallel flow, in order to satisfy all the conditions of MHD equilibrium. This paper reports the only known examples of detached diverted plasma in the DIII-D tokamak with blocked Pfirsch-Schlueter current, and they show no clear SOL poloidal pressure differences. However, the predicted pressure differences are small, near the limit of detectability with the available diagnostics. In the more usual DIII-D partially detached divertor operation mode, the Pfirsch-Schlueter current appears to never be blocked, and no unusual poloidal pressure differences are observed, as expected. Finally, a local overpressure is observed just inside the magnetic separatrix near the X-point in both attached and detached Ohmically heated plasmas
Recommended from our members
Comparison of upstream Te profiles with downstream heat flux profiles and their implications on parallel heat transport in the SOL in DIII-D
Recommended from our members
Comparison of upstream Te profiles with divertor heat flux and its implications on parallel and perpendicular transport in the SOL of DIII-D H-mode plasmas
Edge localized mode control with an edge resonant magnetic perturbation
A low amplitude (ÎŽbrâBT=1 part in 5000) edge resonantmagnetic field perturbation with toroidalmode number n=3 and poloidal mode numbers between 8 and 15 has been used to suppress most large type I edge localized modes(ELMs) without degrading core plasma confinement. ELMs have been suppressed for periods of up to 8.6 energy confinement times when the edge safety factor q95 is between 3.5 and 4. The large ELMs are replaced by packets of events (possibly type II ELMs) with small amplitude, narrow radial extent, and a higher level of magnetic field and density fluctuations, creating a duty cycle with long âactiveâ intervals of high transport and short âquietâ intervals of low transport. The increased transport associated with these events is less impulsive and slows the recovery of the pedestal profiles to the values reached just before the large ELMs without the n=3 perturbation. Changing the toroidal phase of the perturbation by 60° with respect to the best ELM suppression case reduces the ELM amplitude and frequency by factors of 2â3 in the divertor, produces a more stochastic response in the H-mode pedestal profiles, and displays similar increases in small scale events, although significant numbers of large ELMs survive. In contrast to the best ELM suppression case where the type I ELMs are also suppressed on the outboard midplane, the midplane recycling increases until individual ELMs are no longer discernable. The ELM response depends on the toroidal phase of the applied perturbation because intrinsic error fields make the target plasma nonaxisymmetric, and suggests that at least some of the variation in ELM behavior in a single device or among different devices is due to differences in the intrinsic error fields in these devices. These results indicate that ELMs can be suppressed by small edge resonantmagnetic field perturbations. Extrapolation to next-step burning plasma devices will require extending the regime of operation to lower collisionality and understanding the physical mechanism responsible for the ELM suppression.This work was funded by the U.S. Department of Energy
under Grant Nos. DE-FC02-04ER54698, DE-FG02-
04ER54758, DE-FG03-01ER54615, W-7405-ENG-48, DEFG03-96ER54373,
DE-FG02-89ER53297, DE-AC05-
00OR22725, and DE-AC04-94AL85000
Recommended from our members
Radial Particle Flux in the SOL of DIII-D During ELMing H-Mode
The radial particle flux in the scrape-off-layer (SOL) during ELMing H-mode is examined in DIII-D as a function of density. The global radial particle flux in the outboard far SOL is determined by a window frame technique. Between ELMs the outboard far SOL particle flux increases strongly with density but remains similar to the particle flux across the separatrix as estimated by the pedestal density and temperature gradients. At low density the steep density gradient of the pedestal extends up to 2 cm outside the separatrix. At high density the density gradient flattens just outside the separatrix making this region critical for assessment of the far SOL particle flux. During ELMs the far SOL particle flux becomes localized to the outboard midplane and the assumptions for the window frame analysis break down. Implications for scaling of main chamber wall particle flux and pedestal fueling are explored
Recommended from our members
Scrape-Off Layer Transport and Deposition Studies in DIII-D
Trace {sup 13}CH{sub 4} injection experiments into the main scrape-off layer of low density L-mode and high-density H-mode plasmas have been performed in the DIII-D tokamak [Luxon{_}NF02] to mimic the transport and deposition of carbon arising from a main chamber sputtering source. These experiments indicated entrainment of the injected carbon in plasma flow in the main SOL, and transport toward the inner divertor. Ex-situ surface analysis showed enhanced {sup 13}C surface concentration at the corner formed by the divertor floor and the angled target plate of the inner divertor in L-mode; in H-mode, both at the corner and along the surface bounding the private flux region inboard of the outer strike point. Interpretative modeling was made consistent with these experimental results by imposing a parallel carbon ion flow in the main SOL toward the inner target, and a radial pinch toward the separatrix. Predictive modeling carried out to better understand the underlying plasma transport processes suggests that the deuterium flow in the main SOL is related to the degree of detachment of the inner divertor leg. These simulations show that carbon ions are entrained with the deuteron flow in the main SOL via frictional coupling, but higher charge state carbon ions may be suspended upstream of the inner divertor X-point region due to balance of the friction force and the ion temperature gradient
- âŠ