1,267 research outputs found
Dynamical and radiative properties of astrophysical supersonic jets I. Cocoon morphologies
We present the results of a numerical analysis of the propagation and
interaction of a supersonic jet with the external medium. We discuss the motion
of the head of the jet into the ambient in different physical conditions,
carrying out calculations with different Mach numbers and density ratios of the
jet to the exteriors. Performing the calculation in a reference frame in motion
with the jet head, we can follow in detail its long term dynamics. This
numerical scheme allows us also to study the morphology of the cocoon for
different physical parameters. We find that the propagation velocity of the jet
head into the ambient medium strongly influences the morphology of the cocoon,
and this result can be relevant in connection to the origin and structure of
lobes in extragalactic radiosources.Comment: 14 pages, TeX. Accepted for A&
Collisional Quenching at Ultralow Energies: Controlling Efficiency with Internal State Selection
Calculations have been carried out for the vibrational quenching of excited
H molecules which collide with Li ions at ultralow energies. The
dynamics has been treated exactly using the well known quantum coupled-channel
expansions over different initial vibrational levels. The overall interaction
potential has been obtained from the calculations carried out earlier in our
group using highly correlated ab initio methods. The results indicate that
specific features of the scattering observables, e.g. the appearance of
Ramsauer-Townsend minima in elastic channel cross sections and the marked
increase of the cooling rates from specific initial states, can be linked to
potential properties at vanishing energies (sign and size of scattering
lengths) and to the presence of either virtual states or bound states. The
suggestion is made that by selecting the initial state preparation of the
molecular partners, the ionic interactions would be amenable to controlling
quenching efficiency at ultralow energies
Making Fanaroff-Riley I radio sources. Numerical Hydrodynamic 3D Simulations of Low Power Jets
Extragalactic radio sources have been classified into two classes,
Fanaroff-Riley I and II, which differ in morphology and radio power. Strongly
emitting sources belong to the edge-brightened FR II class, and weakly emitting
sources to the edge-darkened FR I class. The origin of this dichotomy is not
yet fully understood. Numerical simulations are successful in generating FR II
morphologies, but they fail to reproduce the diffuse structure of FR Is.
By means of hydro-dynamical 3D simulations of supersonic jets, we investigate
how the displayed morphologies depend on the jet parameters. Bow shocks and
Mach disks at the jet head, which are probably responsible for the hot spots in
the FR II sources, disappear for a jet kinetic power L_kin < 10^43 erg/s. This
threshold compares favorably with the luminosity at which the FR I/FR II
transition is observed.
The problem is addressed by numerical means carrying out 3D HD simulations of
supersonic jets that propagate in a non-homogeneous medium with the ambient
temperature that increases with distance from the jet origin, which maintains
constant pressure.
The jet energy in the lower power sources, instead of being deposited at the
terminal shock, is gradually dissipated by the turbulence. The jets spread out
while propagating, and they smoothly decelerate while mixing with the ambient
medium and produce the plumes characteristic of FR I objects.
Three-dimensionality is an essential ingredient to explore the FR I evolution
because the properties of turbulence in two and three dimensions are very
different, since there is no energy cascade to small scales in two dimensions,
and two-dimensional simulations with the same parameters lead to FRII-like
behavior.Comment: 11 pages, 12 figures, to appear on A&
Astrophysical fluid simulations of thermally ideal gases with non-constant adiabatic index: numerical implementation
An Equation of State (\textit{EoS}) closes the set of fluid equations.
Although an ideal EoS with a constant \textit{adiabatic index} is the
preferred choice due to its simplistic implementation, many astrophysical fluid
simulations may benefit from a more sophisticated treatment that can account
for diverse chemical processes. Here, we first review the basic thermodynamic
principles of a gas mixture in terms of its thermal and caloric EoS by
including effects like ionization, dissociation as well as temperature
dependent degrees of freedom such as molecular vibrations and rotations. The
formulation is revisited in the context of plasmas that are either in
equilibrium conditions (local thermodynamic- or collisional excitation-
equilibria) or described by non-equilibrium chemistry coupled to optically thin
radiative cooling. We then present a numerical implementation of thermally
ideal gases obeying a more general caloric EoS with non-constant adiabatic
index in Godunov-type numerical schemes.We discuss the necessary modifications
to the Riemann solver and to the conversion between total energy and pressure
(or vice-versa) routinely invoked in Godunov-type schemes. We then present two
different approaches for computing the EoS.The first one employs root-finder
methods and it is best suited for EoS in analytical form. The second one leans
on lookup table and interpolation and results in a more computationally
efficient approach although care must be taken to ensure thermodynamic
consistency. A number of selected benchmarks demonstrate that the employment of
a non-ideal EoS can lead to important differences in the solution when the
temperature range is K where dissociation and ionization occur. The
implementation of selected EoS introduces additional computational costs
although using lookup table methods can significantly reduce the overhead by a
factor .Comment: 17 pages, 10 figures, Accepted for publication in A&
The Effect of Expansion on Mass Entrainment and Stability of Super-Alfv\'enic Jets
We extend investigations of mass entrainment by jets, which previously have
focused on cylindrical supermagnetosonic jets and expanding trans-Alfv\'enic
jets, to a set of expanding supermagnetosonic jets. We precess these jets at
the origin to excite the helical mode of the Kelvin-Helmholtz (or KH)
instability, in order to compare the results with predictions from linear
stability analysis. We analyze this simulation set for the spatial development
of magnetized mass, which we interpret as jet plus entrained, initially
unmagnetized external mass. As with the previous simulation sets, we find that
the growth of magnetized mass is associated with the growth of the KH
instability through linear, nonlinear, and saturated stages and with the
expansion of magnetized material in simulated observations of the jet. From
comparison of measured wavelengths and wave speeds with the predictions from
linear stability analysis, we see evidence that the KH instability is the
primary cause for mass entrainment in these simulations, and that the expansion
reduces the rate of mass entrainment. This reduced rate can be observed as a
somewhat greater distance between the two transition points separating the
three stages of expansion.Comment: 18 pages, 6 figures, AASTeX, to appear in Nov 1 issue of ApJ (vol
543), postscript versions of Figures 3 and 5 are available at
http://crux.astr.ua.edu/~rosen/supcon/rh.htm
Evolution of field spiral galaxies up to redshifts z=1
We have gained VLT/FORS spectra and HST/ACS images of a sample of 220 distant
field spiral galaxies. Spatially resolved rotation curves were extracted and
fitted with synthetic velocity fields that take into account all geometric and
observational effects, like blurring due to the slit width and seeing
influence. The maximum rotation velocity Vmax could be determined for 124
galaxies that cover the redshift range 0.1<z<1.0. The luminosity-rotation
velocity distribution of this sample is offset from the Tully-Fisher relation
(TFR) of local low-mass spirals, whereas the distant high-mass spirals are
compatible with the local TFR. We show that the slope of the local and the
intermediate-z TFR would be in compliance if its scatter decreased by more than
a factor of 3 between z~0.5 and z~0. On the other hand, the distant
low-luminosity disks have much lower stellar M/L ratios than their local
counterparts, while high-luminosity disks barely evolved in M/L over the
covered redshift range. This could be the manifestation of the "downsizing"
effect, i.e. the succesive shift of the peak of star formation from high-mass
to low-mass galaxies towards lower redshifts. This trend might be canceled out
in the TF diagram due to the simultaneous evolution of multiple parameters. We
also estimate the ratios between stellar and total masses, finding that these
remained constant since z=1, as would be expected in the context of
hierarchically growing structure. (Abridged)Comment: 20 pages, 5 figures, ApJ, accepte
Dynamical and radiative properties of astrophysical supersonic jets
We present the results of a numerical analysis of the propagation and interaction of a supersonic jet with the external medium. We discuss the motion of the head of the jet into the ambient in different physical conditions, carrying out calculations with different Mach numbers and density ratios of the jet to the exteriors. Performing the calculation in a reference frame in motion with the jet head, we can follow in detail its long term dynamics. This numerical scheme allows us also to study the morphology of the cocoon for different physical parameters. We find that the propagation velocity of the jet head into the ambient medium strongly influences the morphology of the cocoon, and this result can be relevant in connection to the origin and structure of lobes in extragalactic radiosources
On the Dynamics and Structure of Three-Dimensional Trans-Alfvenic Jets
Three-dimensional magnetohydrodynamical simulations of strongly magnetized
``light'' conical jets have been performed. An investigation of the transition
from sub-Alfv\'enic to super-Alfv\'enic flow has been made for nearly poloidal
and for helical magnetic fields. The jets are stable to asymmetric modes of jet
distortion provided they are sub-Alfv\'enic over most of their interior but
destabilize rapidly when they become on average super-Alfv\'enic. The jets are
precessed at the origin and the resulting small amplitude azimuthal motion is
communicated down the jet to the Alfv\'en point where it couples to a slowly
moving and rapidly growing helical twist. Significant jet rotation can
contribute to destabilization via increase in the velocity shear between the
jet and the external medium. Destabilization is accompanied by significant mass
entrainment and the jets slow down significantly as denser external material is
entrained. Synchrotron intensity images satisfactorily reveal large scale
helical structures but have trouble distinguishing a large amplitude elliptical
jet distortion that appears as an apparent pinching in an intensity image.
Smaller scale jet distortions are not clearly revealed in intensity images,
largely as a result of the relatively small total pressure variations that
accompany destabilization and growing distortions. Fractional polarization is
high as a result of the strong ordered magnetic fields except where the
intensity image suggests cancellation of polarization vectors by integration
through twisted structures.Comment: 27 pages, 11 figures, AASTeX, to appear in Oct 20 issue of ApJ,
postscript versions of Figures 5 and 6 are available at this URL
http://crux.astr.ua.edu/~rosen/tralf/hr.htm
Dynamics and Structure of Three-Dimensional Trans-Alfvenic Jets. II. The Effect of Density and Winds
Two three-dimensional magnetohydrodynamical simulations of strongly
magnetized conical jets, one with a poloidal and one with a helical magnetic
field, have been performed. In the poloidal simulation a significant sheath
(wind) of magnetized moving material developed and partially stabilized the jet
to helical twisting. The fundamental pinch mode was not similarly affected and
emission knots developed in the poloidal simulation. Thus, astrophysical jets
surrounded by outflowing winds could develop knotty structures along a straight
jet triggered by pinching. Where helical twisting dominated the dynamics,
magnetic field orientation along the line-of-sight could be organized by the
toroidal flow field accompanying helical twisting. On astrophysical jets such
structure could lead to a reversal of the direction of Faraday rotation in
adjacent zones along a jet. Theoretical analysis showed that the different
dynamical behavior of the two simulations could be entirely understood as a
result of dependence on the velocity shear between jet and wind which must
exceed a surface Alfven speed before the jet becomes unstable to helical and
higher order modes of jet distortion.Comment: 25 pages, 15 figures, in press Astrophysical Journal (September
- …