1,242 research outputs found

    Free-Boundary Dynamics in Elasto-plastic Amorphous Solids: The Circular Hole Problem

    Full text link
    We develop an athermal shear-transformation-zone (STZ) theory of plastic deformation in spatially inhomogeneous, amorphous solids. Our ultimate goal is to describe the dynamics of the boundaries of voids or cracks in such systems when they are subjected to remote, time-dependent tractions. The theory is illustrated here for the case of a circular hole in an infinite two-dimensional plate, a highly symmetric situation that allows us to solve much of the problem analytically. In spite of its special symmetry, this example contains many general features of systems in which stress is concentrated near free boundaries and deforms them irreversibly. We depart from conventional treatments of such problems in two ways. First, the STZ analysis allows us to keep track of spatially heterogeneous, internal state variables such as the effective disorder temperature, which determines plastic response to subsequent loading. Second, we subject the system to stress pulses of finite duration, and therefore are able to observe elasto-plastic response during both loading and unloading. We compute the final deformations and residual stresses produced by these stress pulses. Looking toward more general applications of these results, we examine the possibility of constructing a boundary-layer theory that might be useful in less symmetric situations.Comment: 30 pages (preprint format), 9 figure

    A Climatology of Northwest Missouri Snowfall Events: Long Term Trends and Interannual Variability.

    Get PDF
    The goal of this study was to develop a 50-year statistical climatology of snowfall occurrences using data from a dense network of cooperative station observations covering northwest and central Missouri, and these records were provided by the Missouri Climate Center. This included a study of the long term trends and interannual variability in snowfall occurrence as related to sea surface temperature variations in the Pacific Ocean basin associated with the El Nino and Southern Oscillation (ENSO) and the North Pacific Oscillation (NPO). These trends and variations were then related to four synoptic-scale flow regimes that produce these snowfalls in the Midwest. The results demonstrate that during the snowfall season (Oct - April) the northwest Missouri region can expect about eight snowfall events which produce three or more inches of accumulation. While no significant long-term trend in overall snowfall occurrence was found, a decrease in the number of extreme events (10 or more inches) was noted. Also, fewer snowfall events were found during El Nino years, while more heavy snowfall events occurred during "neutral" years, and these results could be related to synoptic- scale variability. A closer examination of the results demonstrated that El Nino/La Nina related variability in snowfall occurrence was superimposed on longer-term NPO-related variability.This research was supported by the University Corporation for Atmospheric Research (UCAR) Cooperative program for Operational Meteorological Education and Training (COMET) Outreach Programunder award # 98115921

    Formation of the internal structure of solids under severe action

    Full text link
    On the example of a particular problem, the theory of vacancies, a new form of kinetic equations symmetrically incorporation the internal and free energies has been derived. The dynamical nature of irreversible phenomena at formation and motion of defects (dislocations) has been analyzed by a computer experiment. The obtained particular results are extended into a thermodynamic identity involving the law of conservation of energy at interaction with an environment (the 1st law of thermodynamics) and the law of energy transformation into internal degree of freedom (relaxation). The identity is compared with the analogous Jarzynski identity. The approach is illustrated by simulation of processes during severe plastic deformation, the Rybin kinetic equation for this case has been derived.Comment: 9 pages, 5 figure

    String loop corrections to the universal hypermultiplet

    Get PDF
    We study loop corrections to the universal dilaton supermultiplet for type IIA strings compactified on Calabi-Yau threefolds. We show that the corresponding quaternionic kinetic terms receive non-trivial one-loop contributions proportional to the Euler number of the Calabi-Yau manifold, while the higher-loop corrections can be absorbed by field redefinitions. The corrected metric is no longer Kahler. Our analysis implies in particular that the Calabi-Yau volume is renormalized by loop effects which are present even in higher orders, while there are also one-loop corrections to the Bianchi identities for the NS and RR field strengths.Comment: 30 pages, harvmac, 1 figure. v2: minor typos corrected. Version to appear in Classical and Quantum Gravit

    Heterotic-type IIA duality with fluxes

    Get PDF
    In this paper we study a possible non-perturbative dual of the heterotic string compactified on K3 x T^2 in the presence of background fluxes. We show that type IIA string theory compactified on manifolds with SU(3) structure can account for a subset of the possible heterotic fluxes. This extends our previous analysis to a case of a non-perturbative duality with fluxes.Comment: 26 pages, minor corrections; version to appear in JHE

    A forward genetic screen identifies host factors that influence the lysis-lysogeny decision in phage lambda

    Get PDF
    The lysis‐lysogeny decision made by bacteriophage lambda is one of the classic problems of molecular biology. Shortly after infecting a cell, the virus can either go down the lytic pathway and make more viruses, or go down the lysogenic pathway and integrate itself into the host genome. While much is known about how this decision takes place, the extent to which host physiology influences this decision and the mechanisms by which this influence takes place has remained mysterious. To answer this question, we performed a forward genetic screen to systematically identify all of the genes in E. coli that influence the lysis‐lysogeny decision. Our results demonstrate previously unknown links between host physiology and viral decision making and shed new light on this classic system
    • 

    corecore