51 research outputs found

    Mild Mitochondrial Uncoupling and Calorie Restriction Increase Fasting eNOS, Akt and Mitochondrial Biogenesis

    Get PDF
    Enhanced mitochondrial biogenesis promoted by eNOS activation is believed to play a central role in the beneficial effects of calorie restriction (CR). Since treatment of mice with dinitrophenol (DNP) promotes health and lifespan benefits similar to those observed in CR, we hypothesized that it could also impact biogenesis. We found that DNP and CR increase citrate synthase activity, PGC-1α, cytochrome c oxidase and mitofusin-2 expression, as well as fasting plasma levels of NO• products. In addition, eNOS and Akt phosphorylation in skeletal muscle and visceral adipose tissue was activated in fasting CR and DNP animals. Overall, our results indicate that systemic mild uncoupling activates eNOS and Akt-dependent pathways leading to mitochondrial biogenesis

    Effects of Chronic Calorie Restriction or Dietary Resveratrol Supplementation on Insulin Sensitivity Markers in a Primate, Microcebus murinus

    Get PDF
    The prevalence of diabetes and hyperinsulinemia increases with age, inducing metabolic failure and limiting lifespan. Calorie restriction (CR) without malnutrition delays the aging process, but its long-term application to humans seems difficult. Resveratrol (RSV), a dietary polyphenol, appears to be a promising CR mimetic that can be easily administered in humans. In this work, we hypothesized that both CR and RSV impact insulin sensitivity in a non-human primate compared to standard-fed control (CTL) animals. Four- to five-year-old male grey mouse lemurs (Microcebus murinus) were assigned to three dietary groups: a CTL group, a CR group receiving 30% fewer calories than the CTL and a RSV group receiving the CTL diet supplemented with RSV (200 mg·day−1·kg−1). Insulin sensitivity and glycemia were assessed using an oral glucose tolerance test (OGTT) and the homeostasis model assessment of insulin resistance (HOMA-IR index) evaluation after 21 or 33 months of chronic treatment. Resting metabolic rate was also measured to assess the potential relationships between this energy expenditure parameter and insulin sensitivity markers. No differences were found after a 21-month period of treatment, except for lower glucose levels 30 min after glucose loading in CR animals. After 33 months, CR and RSV decreased glycemia after the oral glucose loading without decreasing fasting blood insulin. A general effect of treatment was observed on the HOMA-IR index, with an 81% reduction in CR animals and 53% in RSV animals after 33 months of treatment compared to CTL. Chronic CR and dietary supplementation with RSV affected insulin sensitivity by improving the glucose tolerance of animals without disturbing their baseline insulin secretion. These results suggest that both CR and RSV have beneficial effects on metabolic alterations, although these effects are different in amplitude between the two anti-aging treatments and potentially rely on different metabolic changes

    Insulin Signaling and Insulin Sensitizing in Muscle and Liver of Obese Monkeys: Peroxisome Proliferator-Activated Receptor Gamma Agonist Improves Defective Activation of Atypical Protein Kinase C

    No full text
    Obesity, the metabolic syndrome, and aging share several pathogenic features in both humans and non-human primates, including insulin resistance and inflammation. Since muscle and liver are considered key integrators of metabolism, we sought to determine in biopsies from lean and obese aging rhesus monkeys the nature of defects in insulin activation and, further, the potential for mitigation of such defects by an in vivo insulin sensitizer, rosiglitazone, and a thiazolidinedione activator of the peroxisome proliferator-activated receptor gamma. The peroxisome proliferator-activated receptor gamma agonist reduced hyperinsulinemia, improved insulin sensitivity, lowered plasma triglycerides and free fatty acids, and increased plasma adiponectin. In muscle of obese monkeys, previously shown to exhibit defective insulin signaling, the insulin sensitizer improved insulin activation of atypical protein kinase C (aPKC), the defective direct activation of aPKC by phosphatidylinositol (PI)-3,4,5-(PO4)3, and 5′-AMP-activated protein kinase and increased carnitine palmitoyltransferase-1 mRNA expression, but it did not improve insulin activation of insulin receptor substrate (IRS)-1-dependent PI 3-kinase (IRS-1/PI3K), protein kinase B, or glycogen synthase. We found that, although insulin signaling was impaired in muscle, insulin activation of IRS-1/PI3K, IRS-2/PI3K, protein kinase B, and aPKC was largely intact in liver and that rosiglitazone improved insulin signaling to aPKC in muscle by improving responsiveness to PI-3,4,5-(PO4)3. Antioxid. Redox Signal. 14, 207–219

    Dietary restriction would probably not increase longevity in human beings and other species able to leave unsuitable environments.

    No full text
    This article argues that dietary restriction would not increase longevity in species able to leave a place where they are subjected to starvation. Human beings can emigrate when feeding conditions are a threat to survival and thus they would not live longer if subjected to dietary restriction
    • …
    corecore