729 research outputs found

    Recursion relations and branching rules for simple Lie algebras

    Full text link
    The branching rules between simple Lie algebras and its regular (maximal) simple subalgebras are studied. Two types of recursion relations for anomalous relative multiplicities are obtained. One of them is proved to be the factorized version of the other. The factorization property is based on the existence of the set of weights Γ\Gamma specific for each injection. The structure of Γ\Gamma is easily deduced from the correspondence between the root systems of algebra and subalgebra. The recursion relations thus obtained give rise to simple and effective algorithm for branching rules. The details are exposed by performing the explicit decomposition procedure for A3u(1)B4A_{3} \oplus u(1) \to B_{4} injection.Comment: 15p.,LaTe

    A Demographic Model of an Endangered Florida Native Bromeliad (Tillandsia utriculata)

    Get PDF
    The large, long-lived, epiphytic bromeliad Tillandsia utriculata is currently listed as state-endangered in Florida due to significant population reduction from predation by an invasive weevil, Metamasius callizona. We have developed a novel demographic model of a population of T. utriculata in Myakka River State Park (MRSP) in Sarasota, Florida using a stage-structured matrix model. Analysis of the model revealed conditions for population viability over a variety of parameter scenarios. Model analysis showed that without weevil predation the minimum germination rate required for population viability is low (4–16%), and that given a viable population at structural equilibrium we would expect to find 15 cm in flower or post-flowering each year. Additionally, the model presented here provides a basis for further analyses which explore specific conservation strategies

    Distribution patterns of three sodium channel mutations associated with pyrethroid resistance in Rhipicephalus (Boophilus) microplus populations from North and South America, South Africa and Australia

    Get PDF
    AbstractResistance to synthetic pyrethroids (SP) in the cattle tick Rhipicephalus (Boophilus) microplus is widespread throughout its distribution area. Three single nucleotide substitutions identified in Domains II and III of the sodium channel gene of R. (B.) microplus are known to be associated with target site pyrethroid resistance. We developed a multiplex PCR using allele-specific primers to amplify wild type or mutated genotypes of the three mutations simultaneously. This assay was used to screen tick samples originating from Brazil, Argentina, Mexico, South Africa and Australia whose phenotype to flumethrin and cypermethrin had been determined by the use of the Larval Tarsal test (LTT) or the Larval Packet Test (LPT). These mutations were found to have distinct geographical distributions and result in different resistance phenotypes. The L64I Domain II mutation conferring resistance to several SP compounds was found in all the Brazilian, Argentinean and Australian populations and in one South African population, with frequencies between 38% and 100% in flumethrin and cypermethrin resistant populations. In contrast, this mutation was not found in samples from Mexico, while the Domain III mutation was found exclusively in this country. The G72V Domain II flumethrin-specific mutation was found in a single Australian population, with a very low resistant allele frequency (3%). The homozygous resistant RR genotype of the L64I Domain II mutation correlated significantly with the survival rates at the discriminating doses of flumethrin and cypermethrin. This survey shows the widespread distribution of the L64I Domain II mutation and provides evidence of its geographic separation from the Domain III mutation

    Normal Ribosomal Biogenesis but Shortened Protein Synthetic Response to Acute Eccentric Resistance Exercise in Old Skeletal Muscle

    Get PDF
    Anabolic resistance to feeding in aged muscle is well-characterized; however, whether old skeletal muscle is intrinsically resistant to acute mechanical loading is less clear. The aim of this study was to determine the impact of aging on muscle protein synthesis (MPS), ribosome biogenesis, and protein breakdown in skeletal muscle following a single bout of resistance exercise. Adult male F344/BN rats aged 10 (Adult) and 30 (Old) months underwent unilateral maximal eccentric contractions of the hindlimb. Precursor rRNA increased early post-exercise (6–18 h), preceding elevations in ribosomal mass at 48 h in Adult and Old; there were no age-related differences in these responses. MPS increased early post-exercise in both Adult and Old; however, at 48 h of recovery, MPS returned to baseline in Old but not Adult. This abbreviated protein synthesis response in Old was associated with decreased levels of IRS1 protein and increased BiP, CHOP and eIF2α levels. Other than these responses, anabolic signaling was similar in Adult and Old muscle in the acute recovery phase. Basal proteasome activity was lower in Old, and resistance exercise did not increase the activity of either the ATP-dependent or independent proteasome, or autophagy (Cathepsin L activity) in either Adult or Old muscle. We conclude that MPS and ribosome biogenesis in response to maximal resistance exercise in old skeletal muscle are initially intact; however, the MPS response is abbreviated in Old, which may be the result of ER stress and/or blunted exercise-induced potentiation of the MPS response to feeding
    corecore