543 research outputs found

    Dissociation dynamics of fluorinated ethene cations:\ud from time bombs on a molecular level to double-regime dissociators\ud

    Get PDF
    The dissociative photoionization mechanism of internal energy selected C2_2H3_3F+^+, 1,1-C2_2H2_2F2+_2^+, C2_2HF3+_3^+ and C2_2F4+_4^+ cations have been studied in the 13−20 eV photon energy range using imaging photoelectron photoion coincidence spectroscopy. Five predominant channels have been found; HF loss, statistical and non-statistical F loss, cleavage of the C–C bond post H or F-atom migration, and cleavage of the C=C bond. By modelling the breakdown diagrams and ion time-of-flight distributions using statistical theory, experimental 0 K appearance energies, E0_0, of the daughter ions have been determined. Both C2_2H3_3F+^+ and 1,1-C2_2H2_2F2+_2^+ are veritable time bombs with respect to dissociation via HF loss, where slow dissociation over a reverse barrier is followed by an explosion with large kinetic energy release. The first dissociative ionization pathway for C2_2HF3_3 and C2_2F4_4 involves an atom migration across the C=C bond, giving CF–CHF2+_2^+ and CF–CF3+_3^+, respectively, which then dissociate to form CHF2+_2^+ and CF3+_3^+. The nature of the F-loss pathway has been found to be bimodal for C2_2H3_3F and 1,1-C2_2H2_2F2_2, switching from statistical to non-statistical behaviour as the photon energy increases. The dissociative ionization of C2_2F4_4 is found to be comprised of two regimes. At high internal energies, a long-lived excited electronic state is formed, which loses an F atom in a non-statistical process and undergoes statistical redistribution of energy among the nuclear degrees of freedom. This is followed by a subsequent dissociation. In other words only the ground electronic state phase space stays inaccessible. The accurate E0_0 of CF3+_3^+ and CF+^+ formation from C2_2F4_4 together with the now well established ∆f_fHÂș of C2_2F4_4 yield self-consistent enthalpies of formation for the CF3_3, CF, CF3+_3^+, and CF+^+ species

    Context-dependent detection of fungal parasites in four ant species

    Get PDF
    The reaction between the allyl radical (C3H5˙) and acetylene (C2H2) in a heated microtubular reactor has been studied at the VUV beamline of the Swiss Light Source. The reaction products are sampled from the reactor and identified by their photoion mass-selected threshold photoelectron spectra (ms-TPES) by means of imaging photoelectron photoion coincidence spectroscopy. Cyclopentadiene is identified as the sole reaction product by comparison of the measured photoelectron spectrum with that of cyclopentadiene. With the help of quantum-chemical computations of the C5H7 potential energy surface, the C2H2 + C3H5˙ association reaction is confirmed to be the rate determining step, after which H-elimination to form C5H6 is prompt in the absence of re-thermalization at low pressures. The formation of cyclopentadiene as the sole product from the allyl + acetylene reaction offers a direct path to the formation of cyclic hydrocarbons under combustion relevant conditions. Subsequent reactions of cyclopentadiene may lead to the formation of the smallest polycyclic aromatic molecule, naphthalene

    A Halomethane thermochemical network from iPEPICO experiments and quantum chemical calculations

    Get PDF
    Internal energy selected halomethane cations CH3Cl+, CH2Cl2+, CHCl3+, CH3F+, CH2F2+, CHClF2+ and CBrClF2+ were prepared by vacuum ultraviolet photoionization, and their lowest energy dissociation channel studied using imaging photoelectron photoion coincidence spectroscopy (iPEPICO). This channel involves hydrogen atom loss for CH3F+, CH2F2+ and CH3Cl+, chlorine atom loss for CH2Cl2+, CHCl3+ and CHClF2+, and bromine atom loss for CBrClF2+. Accurate 0 K appearance energies, in conjunction with ab initio isodesmic and halogen exchange reaction energies, establish a thermochemical network, which is optimized to update and confirm the enthalpies of formation of the sample molecules and their dissociative photoionization products. The ground electronic states of CHCl3+, CHClF2+ and CBrClF2+ do not confirm to the deep well assumption, and the experimental breakdown curve deviates from the deep well model at low energies. Breakdown curve analysis of such shallow well systems supplies a satisfactorily succinct route to the adiabatic ionization energy of the parent molecule, particularly if the threshold photoelectron spectrum is not resolved and a purely computational route is unfeasible. The ionization energies have been found to be 11.47 ± 0.01 eV, 12.30 ± 0.02 eV and 11.23 ± 0.03 eV for CHCl3, CHClF2 and CBrClF2, respectively. The updated 0 K enthalpies of formation, ∆fHo0K(g) for the ions CH2F+, CHF2+, CHCl2+, CCl3+, CCl2F+ and CClF2+ have been derived to be 844.4 ± 2.1, 601.6 ± 2.7, 890.3 ± 2.2, 849.8 ± 3.2, 701.2 ± 3.3 and 552.2 ± 3.4 kJ mol–1, respectively. The ∆fHo0K(g) values for the neutrals CCl4, CBrClF2, CClF3, CCl2F2 and CCl3F and have been determined to be –94.0 ± 3.2, –446.6 ± 2.7, –702.1 ± 3.5, –487.8 ± 3.4 and –285.2 ± 3.2 kJ mol–1, respectively

    Ciguatera mini review: 21st century environmental challenges and the interdisciplinary research efforts rising to meet them

    Get PDF
    Globally, the livelihoods of over a billion people are affected by changes to marine eco-systems, both structurally and systematically. Resources and ecosystem services, provided by the marine environment, contribute nutrition, income, and health benefits for communities. One threat to these securities is ciguatera poisoning; worldwide, the most commonly reported non‐bacterial seafood‐related illness. Ciguatera is caused by the consumption of (primarily) finfish contaminated with ciguatoxins, potent neurotoxins produced by benthic single‐cell microalgae. When consumed, ciguatoxins are biotransformed and can bioaccumulate throughout the food‐web via complex path-ways. Ciguatera‐derived food insecurity is particularly extreme for small island‐nations, where fear of intoxication can lead to fishing restrictions by region, species, or size. Exacerbating these com-plexities are anthropogenic or natural changes occurring in global marine habitats, e.g., climate change, greenhouse‐gas induced physical oceanic changes, overfishing, invasive species, and even the international seafood trade. Here we provide an overview of the challenges and opportunities of the 21st century regarding the many facets of ciguatera, including the complex nature of this illness, the biological/environmental factors affecting the causative organisms, their toxins, vectors, detection methods, human‐health oriented responses, and ultimately an outlook towards the future. Ciguatera research efforts face many social and environmental challenges this century. However, several future‐oriented goals are within reach, including digital solutions for seafood supply chains, identifying novel compounds and methods with the potential for advanced diagnostics, treatments, and prediction capabilities. The advances described herein provide confidence that the tools are now available to answer many of the remaining questions surrounding ciguatera and therefore protection measures can become more accurate and routine

    Nitrogen matters: the difference between PANH and PAH formation

    Get PDF
    A solid understanding of and a reliable model for the formation pathways of polycyclic aromatic (nitrogen containing) hydrocarbons (PA(N)Hs) is needed to account for their abundance in the interstellar medium and in Titan's atmosphere as well as to mitigate the emission of these carcinogens in our terrestrial environment. We have investigated the phenyl + acrylonitrile reaction mechanism between 600 and 1200 K in a hot microreactor. Radical intermediates (C9H8N˙), formed by addition, and closed-shell C9H7N products, formed by subsequent hydrogen elimination, are isomer-selectively identified using photoion mass-selected threshold photoelectron spectroscopy in conjunction with Franck–Condon simulations. Although quinoline is the most stable product, the calculated potential energy surface and a kinetic model confirm that the reaction is kinetically controlled and yields four open-chain isomers instead. The absence of quinoline is in stark contrast with the isoelectronic phenyl + vinylacetylene reaction that produces naphthalene. Ab initio calculations suggest that this change is brought about by the stability of the nitrile group, which inhibits ring formation. Therefore, it is unlikely that nitrile precursors form nitrogen-containing rings, which calls for alternative pathways by which nitrogen atoms can be incorporated in aromatic systems to explain their presence in the ISM and Titan's atmosphereLaboratory astrophysics and astrochemistr

    A novel case of MSTO1 gene related congenital muscular dystrophy with progressive neurological involvement

    Get PDF
    Recessive mutations in the MSTO1 gene, encoding for a mitochondrial distribution and morphology regulator, have been recently described in a very limited number of patients with multisystem involvement, mostly characterized by myopathy or dystrophy, cerebellar ataxia, pigmentary retinopathy and raised creatine kinase levels. Here we report an additional patient with recessive MSTO1-related muscular dystrophy (MSTO1-RD), and clinical and radiological evidence of progressive cerebellar involvement. Whole-exome sequencing identified two novel MSTO1 missense variants, c.766C > T (p. (Arg256Trp) and c.1435C > T (p. (Pro479Ser), predicted as damaging by in silico tools. We also report a distinct pattern of selective involvement on muscle MRI in MSTO1-RD. This case confirms a consistent MSTO1-related neuromuscular phenotype and in addition suggests a progressive neurological component at least in some patients, in keeping with the mitochondrial role of the defective protein
    • 

    corecore