1,058 research outputs found

    Full-field strain analysis of bone-biomaterial systems produced by the implantation of osteoregenerative biomaterials in an ovine model

    Get PDF
    Osteoregenerative biomaterials for the treatment of bone defects are under much development, with the aim of favoring osteointegration up to complete bone regeneration. A detailed investigation of bone–biomaterial integration is vital to understand and predict the ability of such materials to promote bone formation, preventing further bone damage and supporting load-bearing regions. This study aims to characterize the ex vivo micromechanics and microdamage evolution of bone–biomaterial systems at the tissue level, combining high-resolution synchrotron microcomputed tomography, in situ mechanics and digital volume correlation. Results showed that the main microfailure events were localized close to or within the newly formed bone tissue, in proximity to the bone–biomaterial interface. The apparent nominal compressive load applied to the composite structures resulted in a complex loading scenario, mainly due to the higher heterogeneity but also to the different biomaterial degradation mechanisms. The full-field strain distribution allowed characterization of microdamage initiation and progression. The findings reported in this study provide a deeper insight into bone–biomaterial integration and micromechanics in relation to the osteoregeneration achieved in vivo for a variety of biomaterials. This could ultimately be used to improve bone tissue regeneration strategies

    Regional variations in discrete collagen fibre mechanics within intact intervertebral disc resolved using synchrotron computed tomography and digital volume correlation

    Get PDF
    Many soft tissues, such as the intervertebral disc (IVD), have a hierarchical fibrous composite structure which suffers from regional damage. We hypothesise that these tissue regions have distinct, inherent fibre structure and structural response upon loading. Here we used synchrotron computed tomography (sCT) to resolve collagen fibre bundles (∼5μm width) in 3D throughout an intact native rat lumbar IVD under increasing compressive load. Using intact samples meant that tissue boundaries (such as endplate-disc or nucleus-annulus) and residual strain were preserved; this is vital for characterising both the inherent structure and structural changes upon loading in tissue regions functioning in a near-native environment. Nano-scale displacement measurements along >10,000 individual fibres were tracked, and fibre orientation, curvature and strain changes were compared between the posterior-lateral region and the anterior region. These methods can be widely applied to other soft tissues, to identify fibre structures which cause tissue regions to be more susceptible to injury and degeneration. Our results demonstrate for the first time that highly-localised changes in fibre orientation, curvature and strain indicate differences in regional strain transfer and mechanical function (e.g. tissue compliance). This included decreased fibre reorientation at higher loads, specific tissue morphology which reduced capacity for flexibility and high strain at the disc-endplate boundary

    Management of Febrile Neutropenia - a German Prospective Hospital Cost Analysis in Lymphoproliferative Disorders, Non-Small Cell Lung Cancer, and Primary Breast Cancer

    Get PDF
    Background: Febrile neutropenia/leukopenia (FN/FL) is the most frequent dose-limiting toxicity of myelosuppressive chemotherapy, but German data on economic consequences are limited. Patients and Methods: A prospective, multicentre, longitudinal, observational study was carried out to evaluate the occurrence of FN/FL and its impact on health resource utilization and costs in non-small cell lung cancer (NSCLC), lymphoproliferative disorder (LPD), and primary breast cancer (PBC) patients. Costs are presented from a hospital perspective. Results: A total of 325 consecutive patients (47% LPD, 37% NSCLC, 16% PBC; 46% women; 38% age >= 65 years) with 68 FN/FL episodes were evaluated. FN/FL occurred in 22% of the LPD patients, 8% of the NSCLC patients, and 27% of the PBC patients. 55 FN/FL episodes were associated with at least 1 hospital stay (LPD n = 34, NSCLC n = 10, PBC n = 11). Mean (median) cost per FN/FL episode requiring hospital care amounted to (sic) 3,950 ((sic) 2,355) and varied between (sic) 4,808 ((sic) 3,056) for LPD, (sic) 3,627 ((sic) 2,255) for NSCLC, and (sic) 1,827 ((sic) 1,969) for PBC patients. 12 FN/FL episodes (LPD n = 9, NSCLC n = 3) accounted for 60% of the total expenses. Main cost drivers were hospitalization and drugs (60 and 19% of the total costs). Conclusions: FN/FL treatment has economic relevance for hospitals. Costs vary between tumour types, being significantly higher for LPD compared to PBC patients. The impact of clinical characteristics on asymmetrically distributed costs needs further evaluation

    Plans to eradicate invasive mammals on an island inhabited by humans and domestic animals (Corvo, Azores, Portugal)

    Get PDF
    Oppel, S., Beaven, B.M., Bolton, M., Bodey, T.W., Geraldes, P., Oliveira, N., Hervias, S., Henriques, A., Silva, C

    Towards a mechanistic understanding of particle shrinkage during biomass pyrolysis via synchrotron X-ray microtomography and in-situ radiography

    Get PDF
    Accurate modelling of particle shrinkage during biomass pyrolysis is key to the production of biochars with specific morphologies. Such biochars represent sustainable solutions to a variety of adsorption-dependent environmental remediation challenges. Modelling of particle shrinkage during biomass pyrolysis has heretofore been based solely on theory and ex-situ experimental data. Here we present the first in-situ phase-contrast X-ray imaging study of biomass pyrolysis. A novel reactor was developed to enable operando synchrotron radiography of fixed beds of pyrolysing biomass. Almond shell particles experienced more bulk shrinkage and less change in porosity than did walnut shell particles during pyrolysis, despite their similar composition. Alkaline pretreatment was found to reduce this difference in feedstock behaviour. Ex-situ synchrotron X-ray microtomography was performed to study the effects of pyrolysis on pore morphology. Pyrolysis led to a redistribution of pores away from particle surfaces, meaning newly formed surface area may be less accessible to adsorbates

    Operando and High-throughput multicscale-tomography

    Get PDF
    We report about multiscale tomography with high throughput at the Diamond beamline I13L. The beamline has the purpose of multi-scale and operando imaging and consists of two independent branchlines operating in real and reciprocal space. The imaging branch -called Diamond-Manchester branchline- hosts micro-tomography, grating interferometry and a full-field microscope. For rapid recording a broad spectrum of the undulator radiation is used either with band-passing the light with a combination of a filter and a deflecting mirror or using a multilayer monochromator. For all the methods similar recording times can be achieved, with typical scanning times of some minutes and covering the resolution range from microns to the 100nm range. Most recently a robot arm has been installed to increase the throughput to 300 samples per day. The system is now implemented for user operation in remote operation mode for the micro-tomography setup and can be expanded to the two other experiments. The instrumental capabilities are applied on various topics such as the study of biodiversity of insects or the structural variations of electrode materials in batteries. Fast recording with dedicated sample environments (not using the sample changing robot) enables operando studies in many areas, the charging/discharging cycles on batteries, the degradation of teeth enamel under various conditions or loading brine sandstone mixtures with CO2, to name some examples. For imaging with highest spatial resolution we managed to improve significantly the recording speed of ptycho-tomography, which is now in the order of hours and will be reduced further. We demonstrated in the past 2-D recording with 10kHz and expand the instrumental capability with specific hardware dependent triggering and scanning schemes. We expand the research program for multi-scale imaging across both branchlines (imaging and coherence branchlines) with first studies such as batteries, brain research, concrete

    Recent advances in availability and synthesis of the economic costs of biological invasions

    Get PDF
    Biological invasions are a global challenge that has received insufficient attention. Recently available cost syntheses have provided policy- and decision makers with reliable and up-to-date information on the economic impacts of biological invasions, aiming to motivate effective management. The resultant InvaCost database is now publicly and freely accessible and enables rapid extraction of monetary cost information. This has facilitated knowledge sharing, developed a more integrated and multidisciplinary network of researchers, and forged multidisciplinary collaborations among diverse organizations and stakeholders. Over 50 scientific publications so far have used the database and have provided detailed assessments of invasion costs across geographic, taxonomic, and spatiotemporal scales. These studies have provided important information that can guide future policy and legislative decisions on the management of biological invasions while simultaneously attracting public and media attention. We provide an overview of the improved availability, reliability, standardization, and defragmentation of monetary costs; discuss how this has enhanced invasion science as a discipline; and outline directions for future development
    • …
    corecore