416 research outputs found

    Leveraging the Grid to Provide a Global Platform for Ubiquitous Computing Research

    Get PDF
    The requirement for distributed systems support for Ubicomp has led to the development of numerous platforms, each addressing a subset of the overall requirements of ubiquitous systems. In contrast, many other scientific disciplines have embraced the vision of a global distributed computing platform, i.e. the Grid. We believe that the Grid has the potential to evolve into an ideal platform for building ubiquitous computing applications. In this paper we explore in detail the areas of synergy between Grid computing and ubiquitous computing and highlight a series of research challenges in this space

    Study of collagen organization in cell-laden hydrogels and animal tissue samples for effective tissue engineering scaffolds

    Get PDF
    The interaction of biomaterials with biological systems is a complex process, that is triggered in response to implants and wounds. It is essential to understand the phases of wound healing response, particularly the interactions of immune cells such as macrophages and fibroblasts, with the local extracellular matrix which can influence implant acceptance or the restoration of the damaged wound site. Materials properties such as compressive modulus, surface geometry, functionalization, and topology can be tuned to modulate the inflammatory and fibrotic responses to wounds and implants. Naturally derived materials, such as alginate, are widely used biomaterials owing to their biocompatibility and the diverse crosslinking strategies that can be used for fabrication. Soft alginate gels can be synthesized after methacrylation to be relatively stable under physiological conditions, while retaining pH sensitivity, which can be useful in the treatment of chronic wounds. Studying the collagen response to NIH/3T3 fibroblasts encapsulated in these soft hydrogels can develop wound healing strategies to promote faster wound healing. The transition of collagen organization from aligned to isotropic states in the dually crosslinked stiffer methacrylated alginate (ALGMA) hydrogels shows promise towards the development of topical gels for wound care. Modifying the surface properties using arginine-like derivatives is effective in modulating the fibroblast response to implanted glass beads in SKH1-E mice. Collagen response to modified glass beads using SHG microscopy was evaluated using several factors such as collagen amount, secretion of collagen III, and organization of collagen. The albizziin modification showed both isotropic collagen organization as well similar collagen type III as unwounded skin. Furthermore, statistical analysis uncovered correlations between SHG derived parameters and the materials properties of the chemical modifiers. Collagen type III was correlated with the surface tension of the modifier, and an empirical equation was derived relating materials parameters with the observed collagen measurements. The effectiveness of diverse wound care strategies on shallow and deep wounds on porcine subjects was conducted using SHG microscopy. Treatment duration, as well as scaffold preparation were instrumental in reducing a scarring response and accelerating wound closure rates. By combining the understanding of wound healing in diverse tissue environments, with environmentally responsive wound dressings, it is possible to improve the quality of life for millions of patients across the world

    Tissue thickness measurement tool for craniofacial reconstruction

    Get PDF
    Craniofacial Reconstruction is a method of recreating the appearance of the face on the skull of a deceased individual for identification purposes. Older clay methods of reconstruction are inaccurate, time consuming and inflexible. The tremendous increase in the processing power of the computers and rapid strides in visualization can be used to perform the reconstruction, saving time and providing greater accuracy and flexibility, without the necessity for a skillful modeler.;This thesis introduces our approach to computerized 3D craniofacial reconstruction. Three phases have been identified. The first phase of the project is to generate a facial tissue thickness database. In the second phase this database along with a 3D facial components database is to be used to generate a generic facial mask which is draped over the skull to recreate the facial appearance. This face is to be identified from a database of images in the third phase.;Tissue thickness measurements are necessary to generate the facial model over the skull. The thesis emphasis is on the first phase of the project. An automated facial tissue thickness measurement tool (TTMT) has been developed to populate this database

    Effects of arginine-based surface modifications of liposomes for drug delivery in Caco-2 colon carcinoma cells

    Get PDF
    Liposomal encapsulation of chemotherapeutics improves circulation time and decreases off-target effects through the enhanced permeability and retention (EPR) effect. Improving the efficacy of these drug carriers through surface modification could benefit patients. A library of arginine derivatives was conjugated to liposomes through carbodiimide chemistry. Both unmodified and modified liposomes were loaded with doxorubicin and exposed to Caco-2 colon carcinoma cells to measure the half maximal inhibitory concentration (IC50). Most of the modifications improved the toxicity of doxorubicin. Principal component analysis (PCA) was used to uncover correlations between physicochemical properties (lipophilicity (log P), partition coefficient (log D), number of hydrogen bond donors, number of hydrogen bond acceptors, freely rotating bonds, surface tension, polarization surface area, and isoelectric point) and the IC50 of encapsulated doxorubicin. Generalized rules for improved toxicity were also developed, which stated that improved drug carriers should have at least 4 hydrogen bond donors, between 4 and 6 freely rotating bonds, an isoelectric point above 5.5, and a log P between -2 and -1. Using these relationships along with previously obtained correlations for macrophages, selective targeting and the understanding of how to rationally design such drug carriers can be improved

    Singly-fed shaped planar inverted-F antenna for circular polarization

    Full text link
    © 2016 IEEE. We propose a singly-fed planar inverted-F antenna (PIFA), with double-shorting planes and a tapered patch for radiating circular polarization. FEKO® simulations are employed to optimize the geometry of the antenna. The antenna prototype resonates at 2.52GHz and has a measured impedance bandwidth of around 240MHz. The calculated 3dB axial ratio bandwidth falls within the impedance bandwidth, demonstrating satisfactory circular polarization characteristics

    Building information modeling-enhanced visualization tool for structural health monitoring

    Get PDF
    With growing number of modern complex infrastructure, robust and autonomous condition assessment of large-scale structures under operational loads and extreme climatic events has garnered significant attention. Data-driven structural health mon- itoring (SHM) techniques offer valuable information of existing health of the struc- tures, maintain the safety and their uninterrupted use under varied operational condi- tions by undertaking risk and hazard mitigation promptly. However, just data-driven approaches are not enough to monitor a large amount of SHM data and conduct systematic decision making for future maintenance. Recently, Building Information Modeling (BIM) has become a valuable tool for design, production, construction, facility management and life-cycle analysis of buildings and bridges. Such a hybrid information modeling platform integrates the architectural, engineering and construc- tion systems of a structure into one place allowing all users to incorporate various features effectively and accurately. In this thesis, a BIM-enabled system is utilized as a promising computing environment and integrated digital representation plat- form of SHM that can visualize a considerable amount of sensor data and subsequent structural health conditions over a prolonged period. In this research, three-dimensional Autodesk Revit® models of a large-span bridge and a pedestrian bridge in Thunder Bay, Ontario are developed to enable automated sensor data inventory into the BIM environment. Such automated tool facilitates achieving systematic maintenance and risk management, while avoiding manual errors resulting from visual inspections of the structures. The proposed integrated tool allows the practicing engineers in organizing, processing, and visualizing the sensor data from the monitoring system, updating relevant finite element (FE) models, and providing valuable feedback for structural retrofitting in a single platform. The data acquisition was performed on various seasons of the year to check the performance of the structure under various temperatures and traffic loading conditions. The results reveal that the proposed method can be considered as a user-friendly and economic framework for condition assessment of large-scale structures in ease

    Scaling plant health innovations

    Get PDF

    Induction of Phase 2 Antioxidant Enzymes by Broccoli Sulforaphane: Perspectives in Maintaining the Antioxidant Activity of Vitamins A, C, and E

    Get PDF
    Consumption of fruits and vegetables is recognized as an important part of a healthy diet. Increased consumption of cruciferous vegetables in particular has been associated with a decreased risk of several degenerative and chronic diseases, including cardiovascular disease and certain cancers. Members of the cruciferous vegetable family, which includes broccoli, Brussels sprouts, cauliflower, and cabbage, accumulate significant concentrations of glucosinolates, which are metabolized in vivo to biologically active isothiocyanates (ITCs). The ITC sulforaphane, which is derived from glucoraphanin, has garnered particular interest as an indirect antioxidant due to its extraordinary ability to induce expression of several enzymes via the KEAP1/Nrf2/ARE pathway. Nrf2/ARE gene products are typically characterized as Phase II detoxification enzymes and/or antioxidant (AO) enzymes. Over the last decade, human clinical studies have begun to provide in vivo evidence of both Phase II and AO enzyme induction by SF. Many AO enzymes are redox cycling enzymes that maintain redox homeostasis and activity of free radical scavengers such as vitamins A, C, and E. In this review, we present the existing evidence for induction of PII and AO enzymes by SF, the interactions of SF-induced AO enzymes and proposed maintenance of the essential vitamins A, C, and E, and, finally, the current view of genotypic effects on ITC metabolism and AO enzyme induction and function
    corecore