564 research outputs found
Photon-Photon Entanglement with a Single Trapped Atom
An experiment is performed where a single rubidium atom trapped within a
high-finesse optical cavity emits two independently triggered entangled
photons. The entanglement is mediated by the atom and is characterized both by
a Bell inequality violation of S=2.5, as well as full quantum-state tomography,
resulting in a fidelity exceeding F=90%. The combination of cavity-QED and
trapped atom techniques makes our protocol inherently deterministic - an
essential step for the generation of scalable entanglement between the nodes of
a distributed quantum network.Comment: 5 pages, 4 figure
Shaping the Phase of a Single Photon
While the phase of a coherent light field can be precisely known, the phase
of the individual photons that create this field, considered individually,
cannot. Phase changes within single-photon wave packets, however, have
observable effects. In fact, actively controlling the phase of individual
photons has been identified as a powerful resource for quantum communication
protocols. Here we demonstrate the arbitrary phase control of a single photon.
The phase modulation is applied without affecting the photon's amplitude
profile and is verified via a two-photon quantum interference measurement,
which can result in the fermionic spatial behaviour of photon pairs. Combined
with previously demonstrated control of a single photon's amplitude, frequency,
and polarisation, the fully deterministic phase shaping presented here allows
for the complete control of single-photon wave packets.Comment: 4 pages, 4 figure
Estimating the feasibility of transition paths in extended finite state machines
There has been significant interest in automating testing on the basis of an extended finite state machine (EFSM) model of the required behaviour of the implementation under test (IUT). Many test criteria require that certain parts of the EFSM are executed. For example, we may want to execute every transition of the EFSM. In order to find a test suite (set of input sequences) that achieves this we might first derive a set of paths through the EFSM that satisfy the criterion using, for example, algorithms from graph theory. We then attempt to produce input sequences that trigger these paths. Unfortunately, however, the EFSM might have infeasible paths and the problem of determining whether a path is feasible is generally undecidable. This paper describes an approach in which a fitness function is used to estimate how easy it is to find an input sequence to trigger a given path through an EFSM. Such a fitness function could be used in a search-based approach in which we search for a path with good fitness that achieves a test objective, such as executing a particular transition, and then search for an input sequence that triggers the path. If this second search fails then we search for another path with good fitness and repeat the process. We give a computationally inexpensive approach (fitness function) that estimates the feasibility of a path. In order to evaluate this fitness function we compared the fitness of a path with the ease with which an input sequence can be produced using search to trigger the path and we used random sampling in order to estimate this. The empirical evidence suggests that a reasonably good correlation (0.72 and 0.62) exists between the fitness of a path, produced using the proposed fitness function, and an estimate of the ease with which we can randomly generate an input sequence to trigger the path
Fast Excitation and Photon Emission of a Single-Atom-Cavity System
We report on the fast excitation of a single atom coupled to an optical
cavity using laser pulses that are much shorter than all other relevant
processes. The cavity frequency constitutes a control parameter that allows the
creation of single photons in a superposition of two tunable frequencies. Each
photon emitted from the cavity thus exhibits a pronounced amplitude modulation
determined by the oscillatory energy exchange between the atom and the cavity.
Our technique constitutes a versatile tool for future quantum networking
experiments.Comment: 4 pages, 5 figure
Reactivity of Gold Hydrides: O2 Insertion into the Au–H Bond
Dioxygen reacts with the gold(I) hydride (IPr)AuH under insertion to give the hydroperoxide, (IPr)AuOOH, a long-postulated reaction in gold catalysis and the first demonstration of O2 activation by Au-H in a well-defined system. Subsequent condensation gave the peroxide (IPr)Au-OO-Au(IPr) (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene). The reaction kinetics are reported, as well as the reactivity of Au(I) hydrides with radical scavengers
An Elementary Quantum Network of Single Atoms in Optical Cavities
Quantum networks are distributed quantum many-body systems with tailored
topology and controlled information exchange. They are the backbone of
distributed quantum computing architectures and quantum communication. Here we
present a prototype of such a quantum network based on single atoms embedded in
optical cavities. We show that atom-cavity systems form universal nodes capable
of sending, receiving, storing and releasing photonic quantum information.
Quantum connectivity between nodes is achieved in the conceptually most
fundamental way: by the coherent exchange of a single photon. We demonstrate
the faithful transfer of an atomic quantum state and the creation of
entanglement between two identical nodes in independent laboratories. The
created nonlocal state is manipulated by local qubit rotation. This efficient
cavity-based approach to quantum networking is particularly promising as it
offers a clear perspective for scalability, thus paving the way towards
large-scale quantum networks and their applications.Comment: 8 pages, 5 figure
Cytotoxicity of Pyrazine-Based Cyclometalated (C^Npz^C)Au(III) Carbene Complexes: Impact of the Nature of the Ancillary Ligand on the Biological Properties
The synthesis of a series of cyclometalated gold(III) complexes supported by pyrazine-based (C^N^C)-type pincer ligands is reported, including the crystal structure of a cationic example. The compounds provide a new platform for the study of antiproliferative properties of gold(III) complexes. Seven complexes were tested: the neutral series (C^Npz^C)AuX [X = Cl (1), 6-thioguanine (4), C≡CPh (5), SPh (6)] and an ionic series that included the N-methyl complex [(C^NpzMe^C)AuCl]BF4 (7) and the N-heterocyclic carbene complexes [(C^Npz^C)AuL]+ with L = 1,3-dimethylbenzimidazol-2-ylidene (2) or 1,3,7,9-tetramethylxanthin-8-ylidene (3). Tests against human leukemia cells identified 1, 2, 3, and 4 as particularly promising, whereas protecting the noncoordinated N atom on the pyrazine ring by methylation (as in 7) reduced the cytotoxicity. Complex 2 proved to be the most effective of the entire series against the HL60 leukemia, MCF-7 breast cancer, and A549 lung cancer cell lines, with IC50 values down to submicromolar levels, associated with a lower toxicity toward healthy human lung fibroblast cells. The benzimidazolylidene complex 2 accumulated more effectively in human lung cancer cells than its caffeine-based analogue 3 and the gold(III) chloride 1. Compound 2 proved to be unaffected by glutathione under physiological conditions for periods of up to 6 days and stabilizes the DNA G-quadruplex and i-motif structures; the latter is the first such report for gold compounds. We also show the first evidence of inhibition of MDM2–p53 protein–protein interactions by a gold-based compound and identified the binding mode of the compound with MDM2 using saturation transfer difference NMR spectroscopy combined with docking calculations
- …