50 research outputs found

    Functioning Chosen Oligopoly Markets in the Poland in the Aspect of the Workings of the Office of Fair Trading

    Get PDF
    The profile of some was introduced in the present article, discordant with the right workings, chosen enterprises act on Polish oligopolic markets the which became detects thanks to supervisory workings Office of Fair Trading (UOKiK). The cartel collusions which have the place on various, Polish oligopolic markets predominate the various kind in the objective catalogue of described delicts. Illegal agreements can concern the inflated price not only, but also the different elements of marketing mix tj. the product, distribution, if the promotion. The consumer from these cases, on the wasted position stands up in every one or /and competitive enterprises which are not the participants of this agreement. That is why proper workings subjects entitled to monitors, finds and limits practician monopolistic he is the key element of the existence of the free market. Last years show that the workings of UOKiK reconcile in the businesses of the dishonest businessmen who in the discordant way with the right desire to maximalize of one’s profits more and more painfully

    Determinants and the Consequences of the Growth of the Level of the Innovations of Enterprises through Investments in Informative Technologies

    Get PDF
    The development of present economies is determined in the considerable measure through the growth of the level of their informative. Investments in suitable informative technologies imply the development of the economy and raise her competitiveness. The implementation of the services of the type e-bussines, ecommerce, e-work, if e-consulting becomes the key to the economic and social success, both for regions as and the whole country. The changes of the level of the innovations of enterprises exert the huge influence on functioning whole economy, sectors, trades, if individual enterprises. The leadership of the own investigations which will contribute to the creation of unique products, inventions which can abroad be transferred is the most effective way of the enlargement of the innovation. This requires obviously system solutions, which will allow to build suitable legal frames, so the Polish scientifically-investigative potential would not to be distracted and so to the Polish searchingly-developmental centres enlarge can the innovation of different economies in the future

    Helicopter Autonomous Ship Landing System

    Get PDF
    This research focuses on developing a helicopter autonomous ship landing algorithm based on the real helicopter ship landing procedure which is already proven and currently used by Navy pilots. It encompasses the entire ship landing procedure from approach to landing using a pilot-inspired vision-based navigation system. The present thesis focuses on the first step towards achieving this overarching objective, which involves modeling the flight dynamics and control of a helicopter and some preliminary simulations of a UH-60 (Blackhawk) helicopter landing on a ship. The airframe of the helicopter is modeled as a rigid body along with rotating articulated blades that can undergo flap, lag and pitch motions about the root. A UH-60 helicopter is used for a representative model due to its ample simulation and flight test data. Modeling a UH-60 helicopter is based on Blade Element Momentum Theory (BEMT), rotor aerodynamics with the Pitt-Peters linear inflow model, empennage aerodynamics and rigid body dynamics for fuselage. For the blade dynamics, the cyclic (1/rev) and collective pitch motions are prescribed and the blade (1/rev) flap and lag motions are obtained as a response to the aerodynamic and inertial forces. The helicopter control inputs and translational and attitude dynamics obtained from the model are validated with flight test data at various speeds and attitude. A linearized model is extracted based on a first-order Taylor series expansion of the nonlinear system about an equilibrium point for the purpose of determining the stability of the dynamic system, investigating sensitivity to gusts, and designing a model-based flight control system. Combined vision-based navigation and Linear Quadratic Regulator (LQR) for set-point tracking is used for disturbance rejection and tracking states. A rotatable camera is used for identifying the relative position of the helicopter with respect to the ship. Based on the position, a corresponding trajectory is computed. Considering the trade-off between transient responses and control efforts, gains for the LQR controller are chosen carefully and realistically. A fully autonomous flight is simulated from approach to landing on a ship. It consists of initial descent, steady forward flight, steady coordinated turn, deceleration, and final landing. Corresponding to each maneuver, relevant linearized model is used and gains are tuned. By using X-plane flight simulator program, the simulation data which include fuselage attitude and position at each time step are visualized with a single flight deck ship. This method allows an aircraft to land on a ship autonomously while maintaining high level of safety and accuracy without the need to capture the ship deck motions, however, by using a camera, and any other additional sensors, which will provide the accurate location of the ship relative to the helicopter. This method is not only relevant for a particular helicopter, but for any types of VTOL aircraft, manned or unmanned. Hence, it can improve the level of safety by preventing human errors that may occur during landing on a ship

    Helicopter Autonomous Ship Landing System

    Get PDF
    This research focuses on developing a helicopter autonomous ship landing algorithm based on the real helicopter ship landing procedure which is already proven and currently used by Navy pilots. It encompasses the entire ship landing procedure from approach to landing using a pilot-inspired vision-based navigation system. The present thesis focuses on the first step towards achieving this overarching objective, which involves modeling the flight dynamics and control of a helicopter and some preliminary simulations of a UH-60 (Blackhawk) helicopter landing on a ship. The airframe of the helicopter is modeled as a rigid body along with rotating articulated blades that can undergo flap, lag and pitch motions about the root. A UH-60 helicopter is used for a representative model due to its ample simulation and flight test data. Modeling a UH-60 helicopter is based on Blade Element Momentum Theory (BEMT), rotor aerodynamics with the Pitt-Peters linear inflow model, empennage aerodynamics and rigid body dynamics for fuselage. For the blade dynamics, the cyclic (1/rev) and collective pitch motions are prescribed and the blade (1/rev) flap and lag motions are obtained as a response to the aerodynamic and inertial forces. The helicopter control inputs and translational and attitude dynamics obtained from the model are validated with flight test data at various speeds and attitude. A linearized model is extracted based on a first-order Taylor series expansion of the nonlinear system about an equilibrium point for the purpose of determining the stability of the dynamic system, investigating sensitivity to gusts, and designing a model-based flight control system. Combined vision-based navigation and Linear Quadratic Regulator (LQR) for set-point tracking is used for disturbance rejection and tracking states. A rotatable camera is used for identifying the relative position of the helicopter with respect to the ship. Based on the position, a corresponding trajectory is computed. Considering the trade-off between transient responses and control efforts, gains for the LQR controller are chosen carefully and realistically. A fully autonomous flight is simulated from approach to landing on a ship. It consists of initial descent, steady forward flight, steady coordinated turn, deceleration, and final landing. Corresponding to each maneuver, relevant linearized model is used and gains are tuned. By using X-plane flight simulator program, the simulation data which include fuselage attitude and position at each time step are visualized with a single flight deck ship. This method allows an aircraft to land on a ship autonomously while maintaining high level of safety and accuracy without the need to capture the ship deck motions, however, by using a camera, and any other additional sensors, which will provide the accurate location of the ship relative to the helicopter. This method is not only relevant for a particular helicopter, but for any types of VTOL aircraft, manned or unmanned. Hence, it can improve the level of safety by preventing human errors that may occur during landing on a ship

    Freight fluctuation risk assessment and management of container shipping companies

    Get PDF

    Helicopter Autonomous Ship Landing System

    Get PDF
    This research focuses on developing a helicopter autonomous ship landing algorithm based on the real helicopter ship landing procedure which is already proven and currently used by Navy pilots. It encompasses the entire ship landing procedure from approach to landing using a pilot-inspired vision-based navigation system. The present thesis focuses on the first step towards achieving this overarching objective, which involves modeling the flight dynamics and control of a helicopter and some preliminary simulations of a UH-60 (Blackhawk) helicopter landing on a ship. The airframe of the helicopter is modeled as a rigid body along with rotating articulated blades that can undergo flap, lag and pitch motions about the root. A UH-60 helicopter is used for a representative model due to its ample simulation and flight test data. Modeling a UH-60 helicopter is based on Blade Element Momentum Theory (BEMT), rotor aerodynamics with the Pitt-Peters linear inflow model, empennage aerodynamics and rigid body dynamics for fuselage. For the blade dynamics, the cyclic (1/rev) and collective pitch motions are prescribed and the blade (1/rev) flap and lag motions are obtained as a response to the aerodynamic and inertial forces. The helicopter control inputs and translational and attitude dynamics obtained from the model are validated with flight test data at various speeds and attitude. A linearized model is extracted based on a first-order Taylor series expansion of the nonlinear system about an equilibrium point for the purpose of determining the stability of the dynamic system, investigating sensitivity to gusts, and designing a model-based flight control system. Combined vision-based navigation and Linear Quadratic Regulator (LQR) for set-point tracking is used for disturbance rejection and tracking states. A rotatable camera is used for identifying the relative position of the helicopter with respect to the ship. Based on the position, a corresponding trajectory is computed. Considering the trade-off between transient responses and control efforts, gains for the LQR controller are chosen carefully and realistically. A fully autonomous flight is simulated from approach to landing on a ship. It consists of initial descent, steady forward flight, steady coordinated turn, deceleration, and final landing. Corresponding to each maneuver, relevant linearized model is used and gains are tuned. By using X-plane flight simulator program, the simulation data which include fuselage attitude and position at each time step are visualized with a single flight deck ship. This method allows an aircraft to land on a ship autonomously while maintaining high level of safety and accuracy without the need to capture the ship deck motions, however, by using a camera, and any other additional sensors, which will provide the accurate location of the ship relative to the helicopter. This method is not only relevant for a particular helicopter, but for any types of VTOL aircraft, manned or unmanned. Hence, it can improve the level of safety by preventing human errors that may occur during landing on a ship

    Helicopter Autonomous Ship Landing System

    Get PDF
    This research focuses on developing a helicopter autonomous ship landing algorithm based on the real helicopter ship landing procedure which is already proven and currently used by Navy pilots. It encompasses the entire ship landing procedure from approach to landing using a pilot-inspired vision-based navigation system. The present thesis focuses on the first step towards achieving this overarching objective, which involves modeling the flight dynamics and control of a helicopter and some preliminary simulations of a UH-60 (Blackhawk) helicopter landing on a ship. The airframe of the helicopter is modeled as a rigid body along with rotating articulated blades that can undergo flap, lag and pitch motions about the root. A UH-60 helicopter is used for a representative model due to its ample simulation and flight test data. Modeling a UH-60 helicopter is based on Blade Element Momentum Theory (BEMT), rotor aerodynamics with the Pitt-Peters linear inflow model, empennage aerodynamics and rigid body dynamics for fuselage. For the blade dynamics, the cyclic (1/rev) and collective pitch motions are prescribed and the blade (1/rev) flap and lag motions are obtained as a response to the aerodynamic and inertial forces. The helicopter control inputs and translational and attitude dynamics obtained from the model are validated with flight test data at various speeds and attitude. A linearized model is extracted based on a first-order Taylor series expansion of the nonlinear system about an equilibrium point for the purpose of determining the stability of the dynamic system, investigating sensitivity to gusts, and designing a model-based flight control system. Combined vision-based navigation and Linear Quadratic Regulator (LQR) for set-point tracking is used for disturbance rejection and tracking states. A rotatable camera is used for identifying the relative position of the helicopter with respect to the ship. Based on the position, a corresponding trajectory is computed. Considering the trade-off between transient responses and control efforts, gains for the LQR controller are chosen carefully and realistically. A fully autonomous flight is simulated from approach to landing on a ship. It consists of initial descent, steady forward flight, steady coordinated turn, deceleration, and final landing. Corresponding to each maneuver, relevant linearized model is used and gains are tuned. By using X-plane flight simulator program, the simulation data which include fuselage attitude and position at each time step are visualized with a single flight deck ship. This method allows an aircraft to land on a ship autonomously while maintaining high level of safety and accuracy without the need to capture the ship deck motions, however, by using a camera, and any other additional sensors, which will provide the accurate location of the ship relative to the helicopter. This method is not only relevant for a particular helicopter, but for any types of VTOL aircraft, manned or unmanned. Hence, it can improve the level of safety by preventing human errors that may occur during landing on a ship

    E-Portfolios in secondary and higher education

    Get PDF
    У статті йдеться про поняття електронного портфоліо у контексті середньої та вищої освіти. Автор торкається таких тем використання електронних портфоліо, як особливості розгортання цієї технології у середній та вищій освіті, зв’язок електронного портфоліо із майбутнім працевлаштуванням студентів а також проблеми, із якими стикаються студенти під час створення електронних портфоліо. Йдеться також про потенційні проблеми застосування електронних портфоліо, про те, як уникати технічних проблем при використанні системи електронних портфоліо для створення вмісту електронного навчання. Зрештою, автор надає інформацію про історію виникнення та розвитку поняття електронних портфоліо та їх значення в сучасному навчальному суспільстві. The article deals with the notion of an ePortfolio in context of secondary and higher education. The author describes such patterns of ePortfolio usage as peculiarities of deployment in secondary and higher education, connection of ePortfolio with future jobs of students, and challenges students face when creating a portfolio. The article also describes potential issues employing ePortfolios, how to avoid technical pitfalls when using the ePortfolio system for creating eLearning content. Lastly, the author provides original information dealing with the history of ePortfolios in contemporary academic society
    corecore