12 research outputs found

    Optical Detection of Lightning from Space

    Get PDF
    Optical sensors have been developed to detect lightning from space during both day and night. These sensors have been fielded in two existing satellite missions and may be included on a third mission in 2002. Satellite-hosted, optically-based lightning detection offers three unique capabilities: (1) the ability to reliably detect lightning over large, often remote, spatial regions, (2) the ability to sample all (IC and CG) lightning, and (3) the ability to detect lightning with uniform (i.e., not range-dependent) sensitivity or detection efficiency. These represent significant departures from conventional RF-based detection techniques, which typically have strong range dependencies (biases) or range limitations in their detection capabilities. The atmospheric electricity team of the NASA Marshall Space Flight Center's Global Hydrology and Climate Center has implemented a three-step satellite lightning research program which includes three phases: proof-of-concept/climatology, science algorithm development, and operational application. The first instrument in the program, the Optical Transient Detector (OTD), is deployed on a low-earth orbit (LEO) satellite with near-polar inclination, yielding global coverage. The sensor has a 1300 x 1300 sq km field of view (FOV), moderate detection efficiency, moderate localization accuracy, and little data bias. The OTD is a proof-of-concept instrument and its mission is primarily a global lightning climatology. The limited spatial accuracy of this instrument makes it suboptimal for use in case studies, although significant science knowledge has been gained from the instrument as deployed

    The electrification of stratiform anvils

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1997.Includes bibliographical references (p. 225-234).by Dennis J. Boccippio.Ph.D

    Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor

    Get PDF
    We describe the clustering algorithm used by the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) for combining the lightning pulse data into events, groups, flashes, and areas. Events are single pixels that exceed the LIS/OTD background level during a single frame (2 ms). Groups are clusters of events that occur within the same frame and in adjacent pixels. Flashes are clusters of groups that occur within 330 ms and either 5.5 km (for LIS) or 16.5 km (for OTD) of each other. Areas are clusters of flashes that occur within 16.5 km of each other. Many investigators are utilizing the LIS/OTD flash data; therefore, we test how variations in the algorithms for the event group and group-flash clustering affect the flash count for a subset of the LIS data. We divided the subset into areas with low (1-3), medium (4-15), high (16-63), and very high (64+) flashes to see how changes in the clustering parameters affect the flash rates in these different sizes of areas. We found that as long as the cluster parameters are within about a factor of two of the current values, the flash counts do not change by more than about 20%. Therefore, the flash clustering algorithm used by the LIS and OTD sensors create flash rates that are relatively insensitive to reasonable variations in the clustering algorithms

    Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics,

    Get PDF
    ABSTRACT During its first three years, the Tropical Rainfall Measuring Mission (TRMM) satellite observed nearly six million precipitation features. The population of precipitation features is sorted by lightning flash rate, minimum brightness temperature, maximum radar reflectivity, areal extent, and volumetric rainfall. For each of these characteristics, essentially describing the convective intensity or the size of the features, the population is broken into categories consisting of the top 0.001%, top 0.01%, top 0.1%, top 1%, top 2.4%, and remaining 97.6%. The set of "weakest/smallest" features composes 97.6% of the population because that fraction does not have detected lightning, with a minimum detectable flash rate of 0.7 flashes (fl) min Ϫ1 . The greatest observed flash rate is 1351 fl min Ϫ1 ; the lowest brightness temperatures are 42 K (85 GHz) and 69 K (37 GHz). The largest precipitation feature covers 335 000 km 2 , and the greatest rainfall from an individual precipitation feature exceeds 2 ϫ 10 12 kg h Ϫ1 of water. There is considerable overlap between the greatest storms according to different measures of convective intensity. The largest storms are mostly independent of the most intense storms. The set of storms producing the most rainfall is a convolution of the largest and the most intense storms. This analysis is a composite of the global Tropics and subtropics. Significant variability is known to exist between locations, seasons, and meteorological regimes. Such variability will be examined in Part II. In Part I, only a crude land-ocean separation is made. The known differences in bulk lightning flash rates over land and ocean result from at least two differences in the precipitation feature population: the frequency of occurrence of intense storms and the magnitude of those intense storms that do occur. Even when restricted to storms with the same brightness temperature, same size, or same radar reflectivity aloft, the storms over water are considerably less likely to produce lightning than are comparable storms over land

    Nitrogen Oxides and Ozones from B-747 Measurements (NOXAR) during POLINAT 2 and SONEX: Overview and Case-Studies on Continental and Marine Convection

    Get PDF
    In the framework of the project POLINAT 2 (Pollution in the North Atlantic Flight Corridor) we measured NO(x) (NO and NO2) and ozone on 98 flights through the North Atlantic Flight Corridor (NAFC) with a fully automated system permanently installed aboard an in-service Swissair B-747 airliner in the period of August to November 1997. The averaged NO, concentrations both in the NAFC and at the U.S. east coast were similar to that measured in autumn 1995 with the same system. The patchy occurrence of NO(x), enhancements up to 3000 pptv over several hundred kilometers (plumes), predominately found over the U.S. east coast lead to a log-normal NO(x) probability density function. In three case-studies we examine the origins of such plumes by combining back-trajectories with brightness temperature enhanced (IR) satellite imagery, with lightning observations from the U.S. National Lightning Detection Network (NLDN) or with the Optical Transient Detector (OTD) satellite. For frontal activity above the continental U.S., we demonstrate that the location of NO(x) plumes can be well explained with maps of convective influence. For another case we show that the number of lightning flashes in a cluster of marine thunderstorms is proportional to the NO(x) concentrations observed several hundred kilometers downwind of the anvil outflows and suggest that lightning was the dominant source. From the fact that in autumn the NO, maximum was found several hundred kilometers off the U.S. east coast, it can be inferred that thunderstorms triggered over the warm Gulf Stream current are an important source for the regional upper tropospheric NO(x) budget in autumn

    OTD Observations of Continental US Ground Flashes Detected by NLDN

    No full text
    Lightning optical flash parameters (e.g., radiance, area, duration, number of optical groups, and number of optical events) derived from almost 5 yrs of Optical Transient Detector (OTD) data are compared with peak current and multiplicity observations derived from the US National Lightning Detection Networkm (NLDN). Despite the relatively low lightning geolocation accuracy afforded by OTD, a total of 48,870 NLDN cloud-to-ground (CG) flashes were correlated with OTD flashes, or about 10,000 CGs per year. The median values of the above OTD flash parameters for the 48,870 CGs were, respectively: 0.137 J/square meters/sr/micrometers, 313.7 square kilometers, 0.189 s, 4 optical groups per CG, and 8 optical events per CG. Invoking the multiplicity data, the median number of optical groups per stroke was 2.5, and the median number of optical events per stroke was 5.0. Median values of peak current for negative and positive CGs were -21.6 kA and 17.8 kA, respectively, and as expected, the negative CGs had a larger average multiplicity than the positive CGs. A statistical summary is provided for all CGs, for positive and negative CGs, and for CGs from different seasons. Standard two-distribution hypothesis tests were perfonned to intercompare the population means of the various lightning parameters. In particular, and to greater than the 99% confidence level, it was found that positive CGs are on average more radiant, of greater areal extent, and are longer lasting than negative CGs. Rankings from a complete set of hypothesis tests between CGs of different polarities and from different seasons are also provided. Most notably, wintertime positive CGs tend to be more radiant, of greater areal extent, and longer lasting than any other group of CGs (i.e., negative springtime CGs, positive summertime CGs, etc.)

    Diurnal Variability of Vertical Structure from a TRMM Passive Microwave "Virtual Radar" Retrieval

    No full text
    Robust description of the diurnal cycle from TRMM observations is complicated by the limitations of Low Earth Orbit (LEO) sampling; from a 'climatological' perspective, sufficient sampling must exist to control for both spatial and seasonal variability, before tackling an additional diurnal component (e.g., with 8 additional 3-hourly or 24 1-hourly bins). For documentation of vertical structure, the narrow sample swath of the TRMM Precipitation Radar limits the resolution of any of these components. A neural-network based 'virtual radar" retrieval has been trained and internally validated, using multifrequency / multipolarization passive microwave(TM1) brightness temperatures and textures parameters and lightning (LIS) observations, as inputs, and PR volumetric reflectivity as targets (outputs). By training the algorithms (essentially highly multivariate, nonlinear regressions) on a very large sample of high-quality co-located data from the center of the TRMM swath, 3D radar reflectivity and derived parameters (VIL, IWC, Echo Tops, etc.) can be retrieved across the entire TMI swath, good to 8-9% over the dynamic range of parameters. As a step in the retrieval (and as an output of the process), each TMI multifrequency pixel (at 85 GHz resolution) is classified into one of the 25 archetypal radar profile vertical structure "types", previously identified using cluster analysis. The dynamic range of retrieved vertical structure appears to have higher fidelity than the current (Version 6) experimental GPROF hydrometeor vertical structure retrievals. This is attributable to correct representation of the prior probabilities of vertical structure variability in the neural network training data, unlike the GPROF cloud-resolving model training dataset used in the V6 algorithms. The LIS lightning inputs are supplementary inputs, and a separate offline neural network has been trained to impute (predict) LIS lightning from passive-microwave-only data. The virtual radar retrieval is thus, in principle, extensible to Aqua/AMSR-E and NPOESS/CMIS passive microwave instruments. The virtual radar approach yields a threefold increase in effective sampling from the mission, albeit of lower-quality "retrieved" data, reducing the variance of local estimates by one third (or the standard deviation by-0.57). In this talk, the variance reduction is leveraged to more finely resolve global diurnal variability in both space and time (local hour)
    corecore