123 research outputs found

    Diagnostic accuracy of a new antigen test for sars-cov-2 detection

    Get PDF
    Background and aims: Quick and reliable diagnostic tools play an important role in con-trolling the spread of the SARS-Cov-2 pandemic. The aim of this study was to evaluate the diagnostic accuracy of a new cyto-salivary antigen test aimed at detecting the presence of antigens for SARS-CoV-2, as compared by the gold standard RT-PCR and a lateral flow test. Methods: A total of 433 healthy volunteers were enrolled in the study and the sensitivity and specificity of the new cyto-salivary antigen test were calculated, as compared to the RT-PCR nasopharyngeal swab and to the lateral flow test. Results: A total of 433 samples were collected and tested at the Mediterranean Fair in Palermo from February 2021 until April 2021. The new cyto-salivary antigen had a sensitivity of 100% and a specificity of 94.2%. The sensitivity and the specificity of the lateral flow test were 55% and 100%, respectively. Conclusions: The new cyto-salivary antigen test detected more positive cases than the RT-PCR in a sample of asymptomatic subjects, demonstrating to be a promising tool for a more sensitive diagnosis of COVID-19. Further studies are warranted to better characterize its diagnostic accuracy

    New trends in precision medicine: A pilot study of pure light scattering analysis as a useful tool for non-small cell lung cancer (nsclc) diagnosis

    Get PDF
    Background: To date, in personalized medicine approaches, single-cell analyses such as circulating tumour cells (CTC) are able to reveal small structural cell modifications, and therefore can retrieve several biophysical cell properties, such as the cell dimension, the dimensional relationship between the nucleus and the cytoplasm and the optical density of cellular sub-compartments. On this basis, we present in this study a new morphological measurement approach for the detection of vital CTC from pleural washing in individual non-small cell lung cancer (NSCLC) patients. Materials and methods: After a diagnosis of pulmonary malignancy, pleural washing was collected from nine NSCLC patients. The collected samples were processed with a density gradient separation process. Light scattering analysis was performed on a single cell. The results of this analysis were used to obtain the cell’s biophysical pattern and, later on, as basis for Machine Learning (ML) on unknown samples. Results: Morphological single-cell analysis followed by ML show a predictive picture for an NSCLC patient, screening that it is possible to distinguish CTC from other cells. Moreover, we find that the proposed measurement approach was fast, reliable, label-free, identifying and count CTC in a biological fluid. Conclusions: Our findings demonstrate that CTC Biophysical Profile by Pure Light Scattering in NSCLC could be used as a promising diagnostic candidate in NSCLC patients

    The crosstalk between prostate cancer and microbiota inflammation: Nutraceutical products are useful to balance this interplay?

    Get PDF
    The human microbiota shows pivotal roles in urologic health and disease. Emerging studies indicate that gut and urinary microbiomes can impact several urological diseases, both benignant and malignant, acting particularly on prostate inflammation and prostate cancer. Indeed, the microbiota exerts its influence on prostate cancer initiation and/or progression mechanisms through the regulation of chronic inflammation, apoptotic processes, cytokines, and hormonal production in response to different pathogenic noxae. Additionally, therapies’ and drugs’ responses are influenced in their efficacy and tolerability by microbiota composition. Due to this complex potential interconnection between prostate cancer and microbiota, exploration and understanding of the involved relationships is pivotal to evaluate a potential therapeutic application in clinical practice. Several natural compounds, moreover, seem to have relevant effects, directly or mediated by microbiota, on urologic health, posing the human microbiota at the crossroad between prostatic inflammation and prostate cancer development. Here, we aim to analyze the most recent evidence regarding the possible crosstalk between prostate, microbiome, and inflammation

    Peripheral Purinergic Modulation in Pediatric Orofacial Inflammatory Pain Affects Brainstem Nitroxidergic System: A Translational Research

    Get PDF
    Physiology of orofacial pain pathways embraces primary afferent neurons, pathologic changes in the trigeminal ganglion, brainstem nociceptive neurons, and higher brain function regulating orofacial nociception. The goal of this study was to investigate the nitroxidergic system alteration at brainstem level (spinal trigeminal nucleus), and the role of peripheral P2 purinergic receptors in an experimental mouse model of pediatric inflammatory orofacial pain, to increase knowledge and supply information concerning orofacial pain in children and adolescents, like pediatric dentists and pathologists, as well as oro-maxillo-facial surgeons, may be asked to participate in the treatment of these patients. The experimental animals were treated subcutaneously in the perioral region with pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS), a P2 receptor antagonist, 30 minutes before formalin injection. The pain-related behavior and the nitroxidergic system alterations in the spinal trigeminal nucleus using immunohistochemistry and western blotting analysis have been evaluated. The local administration of PPADS decreased the face-rubbing activity and the expression of both neuronal and inducible nitric oxide (NO) synthase isoforms in the spinal trigeminal nucleus. These results underline a relationship between orofacial inflammatory pain and nitroxidergic system in the spinal trigeminal nucleus and suggest a role of peripheral P2 receptors in trigeminal pain transmission influencing NO production at central level. In this way, orofacial pain physiology should be elucidated and applied to clinical practice in the future

    Effect of restriction vegan diet's on muscle mass, oxidative status, and myocytes differentiation: A pilot study

    Get PDF
    This study was conceived to evaluate the effects of three different diets on body composition, metabolic parameters and serum oxidative status. We enrolled three groups of healthy men (omnivores, vegetarians and vegans) with similar age, weight and BMI and we observed a significant decrease in muscle mass index and lean body mass in vegan compared to vegetarian and omnivore groups, and higher serum homocysteine levels in vegetarians and vegans compared to omnivores. We studied whether serum from omnivore, vegetarian and vegan subjects affected oxidative stress, growth and differentiation of both cardiomyoblast cell line H9c2 and H-H9c2 (H9c2 treated with H2 O2 to induce oxidative damage). We demonstrated that vegan sera treatment of both H9c2 and H-H9c2 cells induced an increase of TBARS values and cell death and a decrease of free NO2- compared to vegetarian and omnivorous sera. Afterwards, we investigated the protective effects of vegan, vegetarian and omnivore sera on the morphological changes induced by H2 O2 in H9c2 cell line. We showed that the omnivorous sera had major antioxidant and differentiation properties compared to vegetarian and vegan sera. Finally, we evaluated the influence of the three different groups of sera on MAPKs pathway and our data suggested that ERK expression increased in H-H9c2 cells treated with vegetarian and vegan sera and could promote cell death. The results obtained in this study demonstrated that restrictive vegan diet could not prevent the onset of metabolic and cardiovascular diseases nor protect by oxidative damage. This article is protected by copyright. All rights reserved

    Differential Response of Primary and Immortalized CD4+ T Cells to Neisseria gonorrhoeae-Induced Cytokines Determines the Effect on HIV-1 Replication

    Get PDF
    To compare the effect of gonococcal co-infection on immortalized versus primary CD4+ T cells the Jurkat cell line or freshly isolated human CD4+ T cells were infected with the HIV-1 X4 strain NL4-3. These cells were exposed to whole gonococci, supernatants from gonococcal-infected PBMCs, or N. gonorrhoeae-induced cytokines at varying levels. Supernatants from gonococcal-infected PBMCs stimulated HIV-1 replication in Jurkat cells while effectively inhibiting HIV-1 replication in primary CD4+ T cells. ELISA-based analyses revealed that the gonococcal-induced supernatants contained high levels of proinflammatory cytokines that promote HIV-1 replication, as well as the HIV-inhibitory IFNα. While all the T cells responded to the HIV-stimulatory cytokines, albeit to differing degrees, the Jurkat cells were refractory to IFNα. Combined, these results indicate that N. gonorrhoeae elicits immune-modulating cytokines that both activate and inhibit HIV-production; the outcome of co-infection depending upon the balance between these opposing signals

    Deregulation of miRNAs in malignant pleural mesothelioma is associated with prognosis and suggests an alteration of cell metabolism

    Get PDF
    Malignant pleural mesothelioma (MPM) is an aggressive human cancer and miRNAs can play a key-role for this disease. In order to broaden the knowledge in this field, the miRNA expression was investigated in a large series of MPM to discover new pathways helpful in diagnosis, prognosis and therapy. We employed nanoString nCounter system for miRNA profiling on 105 MPM samples and 10 healthy pleura. The analysis was followed by the validation of the most significantly deregulated miRNAs by RT-qPCR in an independent sample set. We identified 63 miRNAs deregulated in a statistically significant way. MiR-185, miR-197, and miR-299 were confirmed differentially expressed, after validation study. In addition, the results of the microarray analysis corroborated previous findings concerning miR-15b-5p, miR-126-3p, and miR-145-5p. Kaplan-Meier curves were used to explore the association between miRNA expression and overall survival (OS) and identified a 2-miRNA prognostic signature (Let-7c-5p and miR-151a-5p) related to hypoxia and energy metabolism respectively. In silico analyses with DIANA-microT-CDS highlighted 5 putative targets in common between two miRNAs. With the present work we showed that the pattern of miRNAs expression is highly deregulated in MPM and that a 2-miRNA signature can be a new useful tool for prognosis in MPM

    Apoptosis Induced by Piroxicam plus Cisplatin Combined Treatment Is Triggered by p21 in Mesothelioma

    Get PDF
    BACKGROUND: Malignant mesothelioma (MM) is a rare, highly aggressive tumor, associated to asbestos exposure. To date no chemotherapy regimen for MM has proven to be definitively curative, and new therapies for MM treatment need to be developed. We have previously shown in vivo that piroxicam/cisplatin combined treatment in MM, specifically acts on cell cycle regulation triggering apoptosis, with survival increase. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed, at molecular level, the apoptotic increase caused by piroxicam/cisplatin treatment in MM cell lines. By means of genome wide analyses, we analyzed transcriptional gene deregulation both after the single piroxicam or cisplatin and the combined treatment. Here we show that apoptotic increase following combined treatment is mediated by p21, since apoptotic increase in piroxicam/cisplatin combined treatment is abolished upon p21 silencing. CONCLUSIONS/SIGNIFICANCE: Piroxicam/cisplatin combined treatment determines an apoptosis increase in MM cells, which is dependent on the p21 expression. The results provided suggest that piroxicam/cisplatin combination might be tested in clinical settings in tumor specimens that express p21
    • …
    corecore