529 research outputs found

    Exploring the bulk of the BL Lac object population:1. parsec-scale radio structures

    Full text link
    Context. The advent of Fermi is changing our understanding on the radio and gamma-ray emission in Active Galactic Nuclei. Contrary to pre-Fermi ideas, BL Lac objects are found to be the most abundant emitters in the gamma-ray band. However, since they are relatively weak radio sources, most of their parsec-scale structure and their multi-frequency properties are poorly understood and/or have not been investigated in a systematically fashion. Aims. Our main goal is to analyze the radio and gamma-ray emission properties of a sample of 42 BL Lacs selected, for the first time in the literature, with no constraint on their radio and gamma-ray flux densities/emission. Methods. Thanks to new Very Long Baseline Array observations at 8 and 15 GHz for the whole sample, we present here fundamental parameters such as radio flux densities, spectral index information, and parsec-scale structure. Moreover, we search for gamma-ray counterparts using data reported in the Second Catalog of Fermi Gamma-ray sources. Results. Parsec-scale radio emission is observed in the majority of the sources at both frequencies. Gamma-ray counterparts are found for 14/42 sources. Conclusions. The comparison between our results in radio and gamma-ray bands points out the presence of a large number of faint BL Lacs showing "non classical" properties such as low source compactness, core dominance, no gamma-ray emission and steep radio spectral indexes. A deeper multiwavelength analysis will be needed.Comment: 19 pages, 6 figures, 6 tables, accepted for publication in A&

    Radio morphology-accretion mode link in FRII low-excitation radio galaxies

    Full text link
    Fanaroff-Riley II low-excitation radio galaxies (FRII-LERGs) are characterized by weak nuclear excitation on pc-scales and by properties typical of powerful FRIIs (defined as high-excitation, hereafter HERGs/BLRGs) on kp-scales. Since a link between the accretion properties and the power of the produced jets is expected both from theory and observations, their nature is still debated. In this work we investigate the X-ray properties of a complete sample of 19 FRII-LERGs belonging to the 3CR catalog, exploiting Chandra and XMM-Newton archival data. We also analyze 32 FRII-HERGs/BLRGs with Chandra data as a control sample. We compared FRII-LERG and FRII-HERG/BLRG X-ray properties and optical data available in literature to obtain a wide outlook of their behavior. The low accretion rate estimates for FRII-LERGs, from both X-ray and optical bands, allow us to firmly reject the hypothesis for that they are the highly obscured counterpart of powerful FRII-HERGs/BLRGs. Therefore, at least two hypothesis can be invoked to explain the FRII-LERGs nature: (i) they are evolving from classical FRIIs because of the depletion of accreting cold gas in the nuclear region, while the extended radio emission is the heritage of a past efficiently accreting activity; (ii) they are an intrinsically distinct class of objects with respect to classical FRIs/FRIIs. Surprisingly, in this direction a correlation between accretion rates and environmental richness is found in our sample. The richer the environment, the more inefficient is the accretion. In this framework, the FRII-LERGs are intermediate between FRIs and FRII-HERGs/BLRGs both in terms of accretion rate and environment.Comment: 13 pages, 7 figures, Accepted for publication in MNRA

    Infrared Thermography to an Aluminium Foam Sandwich Structure Subjected to Low Velocity Impact Tests

    Get PDF
    Abstract This work is the straightforward continuation of previous ones in which vibro-acoustic characteristics of AFS panels were investigated both numerically and experimentally. Herein, the use of infrared thermography (IRT) is exploited to investigate impact damaging of an aluminium foam sandwich panel by monitoring its surface, opposite to the impact, during a low velocity impact test, which is performed with a modified Charpy pendulum. Thermal images, acquired in time sequence during the impact by the infrared camera, are post-processed to get information useful for understanding absorption capabilities and impact damaging mechanisms of this kind of structure

    Large-scale radio morphology and nuclear accretion in FRII-low-excitation radio galaxies

    Get PDF
    Radio galaxies (RGs) are among the most energetic manifestation of the AGN phenomenon and, as such, are extraordinarily relevant to address important unknowns relating accretion and ejection, and to investigate the role of the surrounding environment in shaping the radio morphology. The best candidates for this pioneering study are the RGs classified as FRII-LERGs, since they show both a radio morphology typical of powerful RGs (expected to have a standard accretion disc) and have an inefficient engine, as suggested by their optical spectra. In this work we study the X-ray properties of all the FRII-LERGs of the 3CR sample at z<0.3 testing three possible scenarios: (i) FRII-LERGs are recently switched-off high-excitation RGs (HERGs) with efficient accretion disc; (ii) FRII-LERGs are strongly absorbed HERGs; (iii) FRII-LERGs are inefficient accretors and their large-scale radio emission is mainly determined by the environment. These results will be further supplemented by multi-wavelength observations, with particular attention to the radio band

    The magnetic field structure in CTA 102 from high-resolution mm-VLBI observations during the flaring state in 2016-2017

    Full text link
    CONTEXT: Investigating the magnetic field structure in the innermost regions of relativistic jets is fundamental to understanding the crucial physical processes giving rise to jet formation, as well as to their extraordinary radiation output up to γ-ray energies. AIMS: We study the magnetic field structure of the quasar CTA 102 with 3 and 7 mm VLBI polarimetric observations, reaching an unprecedented resolution (∼50 μas). We also investigate the variability and physical processes occurring in the source during the observing period, which coincides with a very active state of the source over the entire electromagnetic spectrum. METHODS: We perform the Faraday rotation analysis using 3 and 7 mm data and we compare the obtained rotation measure (RM) map with the polarization evolution in 7 mm VLBA images. We study the kinematics and variability at 7 mm and infer the physical parameters associated with variability. From the analysis of γ-ray and X-ray data, we compute a minimum Doppler factor value required to explain the observed high-energy emission. RESULTS: Faraday rotation analysis shows a gradient in RM with a maximum value of ∼6 × 104⁴ rad m⁻² and intrinsic electric vector position angles (EVPAs) oriented around the centroid of the core, suggesting the presence of large-scale helical magnetic fields. Such a magnetic field structure is also visible in 7 mm images when a new superluminal component is crossing the core region. The 7 mm EVPA orientation is different when the component is exiting the core or crossing a stationary feature at ∼0.1 mas. The interaction between the superluminal component and a recollimation shock at ∼0.1 mas could have triggered the multi-wavelength flares. The variability Doppler factor associated with such an interaction is large enough to explain the high-energy emission and the remarkable optical flare occurred very close in time.Accepted manuscrip

    The TeV-emitting radio galaxy 3C 264. VLBI kinematics and SED modeling

    Get PDF
    Context. In March 2018, the detection by VERITAS of very-high-energy emission (VHE &gt; 100 GeV) from 3C 264 was reported. This is the sixth, and second most distant, radio galaxy ever detected in the TeV regime. Aims: In this article we present a radio and X-ray analysis of the jet in 3C 264. We determine the main physical parameters of the parsec-scale flow and explore the implications of the inferred kinematic structure for radiative models of this γ-ray emitting jet. Methods: The radio data set is comprised of VLBI observations at 15 GHz from the MOJAVE program, and covers a time period of about two years. Through a segmented wavelet decomposition method (WISE code), we estimated the apparent displacement of individual plasma features; we then performed a pixel-based analysis of the stacked image to determine the jet shape. The X-ray data set includes all available observations from the Chandra, XMM, and Swift satellites, and is used, together with archival data in the other bands, to build the spectral energy distribution (SED). Results: Proper motion is mostly detected along the edges of the flow, which appears strongly limb brightened. The apparent speeds increase as a function of distance from the core up to a maximum of ̃11.5 c. This constrains the jet viewing angle to assume relatively small values (θ ≲ 10°). In the acceleration region, extending up to a de-projected distance of ̃4.8 × 104 Schwarzschild radii (̃11 pc), the jet is collimating (r ∝ z0.40 ± 0.04), as predicted for a magnetically-driven plasma flow. By assuming that the core region is indeed magnetically dominated (UB/Ue &gt; 1), the SED and the jet power can be well reproduced in the framework of leptonic models, provided that the high-energy component is associated to a second emitting region. The possibility that this region is located at the end of the acceleration zone, either in the jet layer or in the spine, is explored in the modeling

    The TeV-emitting radio galaxy 3C 264. VLBI kinematics and SED modeling

    Get PDF
    Context. In March 2018, the detection by VERITAS of very-high-energy emission (VHE &gt; 100 GeV) from 3C 264 was reported. This is the sixth, and second most distant, radio galaxy ever detected in the TeV regime. Aims: In this article we present a radio and X-ray analysis of the jet in 3C 264. We determine the main physical parameters of the parsec-scale flow and explore the implications of the inferred kinematic structure for radiative models of this γ-ray emitting jet. Methods: The radio data set is comprised of VLBI observations at 15 GHz from the MOJAVE program, and covers a time period of about two years. Through a segmented wavelet decomposition method (WISE code), we estimated the apparent displacement of individual plasma features; we then performed a pixel-based analysis of the stacked image to determine the jet shape. The X-ray data set includes all available observations from the Chandra, XMM, and Swift satellites, and is used, together with archival data in the other bands, to build the spectral energy distribution (SED). Results: Proper motion is mostly detected along the edges of the flow, which appears strongly limb brightened. The apparent speeds increase as a function of distance from the core up to a maximum of ̃11.5 c. This constrains the jet viewing angle to assume relatively small values (θ ≲ 10°). In the acceleration region, extending up to a de-projected distance of ̃4.8 × 104 Schwarzschild radii (̃11 pc), the jet is collimating (r ∝ z0.40 ± 0.04), as predicted for a magnetically-driven plasma flow. By assuming that the core region is indeed magnetically dominated (UB/Ue &gt; 1), the SED and the jet power can be well reproduced in the framework of leptonic models, provided that the high-energy component is associated to a second emitting region. The possibility that this region is located at the end of the acceleration zone, either in the jet layer or in the spine, is explored in the modeling

    Characterisation of Bioglass based foams developed via replication of natural marine sponges

    No full text
    A comparative characterisation of Bioglass based scaffolds for bone tissue engineering applications developed via a replication technique of natural marine sponges as sacrificial template is presented, focusing on their architecture and mechanical properties. The use of these sponges presents several advantages, including the possibility of attaining higher mechanical properties than those scaffolds made by foam replica method (up to 4 MPa) due to a decrease in porosity (68-76%) without affecting the pore interconnectivity (higher than 99%). The obtained pore structure possesses not only pores with a diameter in the range 150-500 mm, necessary to induce bone ingrowth, but also pores in the range of 0-200 mm, which are requested for complete integration of the scaffold and for neovascularisation. In this way, it is possible to combine the main properties that a three-dimensional scaffold should have for bone regeneration: interconnected and high porosity, adequate mechanical properties and bioactivity

    Dementia, infections and vaccines: 30 years of controversy

    Get PDF
    This paper reports the proceedings of a virtual meeting convened by the European Interdisciplinary Council on Ageing (EICA), to discuss the involvement of infectious disorders in the pathogenesis of dementia and neurological disorders leading to dementia. We recap how our view of the infectious etiology of dementia has changed over the last 30&nbsp;years in light of emerging evidence, and&nbsp;we present evidence in support of the implication of infection in dementia, notably Alzheimer’s disease (AD). The bacteria and viruses thought to be responsible for neuroinflammation and neurological damage are reviewed. We then review the genetic basis for neuroinflammation and dementia, highlighting the genes that are currently the focus of investigation as potential targets for therapy. Next, we describe the antimicrobial hypothesis of dementia, notably the intriguing possibility that amyloid beta may itself possess antimicrobial properties. We further describe the clinical relevance of the gut–brain axis in dementia, the mechanisms by which infection can move from the intestine to the brain, and recent findings regarding dysbiosis patterns in patients with AD. We review the involvement of specific pathogens in neurological disorders, i.e. SARS-CoV-2, human immunodeficiency virus (HIV), herpes simplex virus type 1 (HSV1), and influenza. Finally, we look at the role of vaccination to prevent dementia. In conclusion, there is a large body of evidence supporting the involvement of various infectious pathogens in the pathogenesis of dementia, but large-scale studies with long-term follow-up are needed to elucidate the role that infection may play, especially before subclinical or clinical disease is present
    corecore