356 research outputs found

    Kinematics of Tycho-2 Red Giant Clump Stars

    Full text link
    Based on the Ogorodnikov-Milne model, we analyze the proper motions of 95 633 red giant clump (RGC) stars from the Tycho-2 Catalogue. The following Oort constants have been found: A = 15.9+-0.2 km/s/kpc and B = -12.0+-0.2 km/s/kpc. Using 3632 RGC stars with known proper motions, radial velocities, and photometric distances, we show that, apart from the star centroid velocity components relative to the Sun, only the model parameters that describe the stellar motions in the XY plane differ significantly from zero. We have studied the contraction (a negative K-effect) of the system of RGC stars as a function of their heliocentric distance and elevation above the Galactic plane. For a sample of distant (500--1000 pc) RGC stars located near the Galactic plane (|Z|<200 pc) with an average distance of d=0.7 kpc, the contraction velocity is shown to be Kd= -3.5+-0.9 km/s; a noticeable vertex deviation, lxy = 9.1+-0.5 degrees, is also observed for them. For stars located well above the Galactic plane (|Z|>=200 pc), these effects are less pronounced, Kd = -1.7+-0.5 km/s and lxy = 4.9+-0.6 degrees. Using RGC stars, we have found a rotation around the Galactic X axis directed toward the Galactic center with an angular velocity of -2.5+-0.3 km/s/kpc, which we associate with the warp of the Galactic stellar-gaseous disk.Comment: 23 pages, 7 figures, 4 table

    Galactic Rotation Parameters from Data on Open Star Clusters

    Full text link
    Currently available data on the field of velocities Vr, Vl, Vb for open star clusters are used to perform a kinematic analysis of various samples that differ by heliocentric distance, age, and membership in individual structures (the Orion, Carina--Sagittarius, and Perseus arms). Based on 375 clusters located within 5 kpc of the Sun with ages up to 1 Gyr, we have determined the Galactic rotation parameters Wo =-26.0+-0.3 km/s/kpc, W'o = 4.18+-0.17 km/s/kpc^2, W''o=-0.45+-0.06 km/s/kpc^3, the system contraction parameter K = -2.4+-0.1 km/s/kpc, and the parameters of the kinematic center Ro =7.4+-0.3 kpc and lo = 0+-1 degrees. The Galactocentric distance Ro in the model used has been found to depend significantly on the sample age. Thus, for example, it is 9.5+-0.7 kpc and 5.6+-0.3 kpc for the samples of young (50 Myr) clusters, respectively. Our study of the kinematics of young open star clusters in various spiral arms has shown that the kinematic parameters are similar to the parameters obtained from the entire sample for the Carina-Sagittarius and Perseus arms and differ significantly from them for the Orion arm. The contraction effect is shown to be typical of star clusters with various ages. It is most pronounced for clusters with a mean age of 100 Myr, with the contraction velocity being Kr = -4.3+-1.0 km/s.Comment: 14 pages, 4 figures, 2 table

    Cooling process for inelastic Boltzmann equations for hard spheres, Part II: Self-similar solutions and tail behavior

    Full text link
    We consider the spatially homogeneous Boltzmann equation for inelastic hard spheres, in the framework of so-called constant normal restitution coefficients. We prove the existence of self-similar solutions, and we give pointwise estimates on their tail. We also give general estimates on the tail and the regularity of generic solutions. In particular we prove Haff 's law on the rate of decay of temperature, as well as the algebraic decay of singularities. The proofs are based on the regularity study of a rescaled problem, with the help of the regularity properties of the gain part of the Boltzmann collision integral, well-known in the elastic case, and which are extended here in the context of granular gases.Comment: 41 page

    Elemental Abundances of Solar Sibling Candidates

    Get PDF
    Dynamical information along with survey data on metallicity and in some cases age have been used recently by some authors to search for candidates of stars that were born in the cluster where the Sun formed. We have acquired high resolution, high signal-to-noise ratio spectra for 30 of these objects to determine, using detailed elemental abundance analysis, if they could be true solar siblings. Only two of the candidates are found to have solar chemical composition. Updated modeling of the stars' past orbits in a realistic Galactic potential reveals that one of them, HD162826, satisfies both chemical and dynamical conditions for being a sibling of the Sun. Measurements of rare-element abundances for this star further confirm its solar composition, with the only possible exception of Sm. Analysis of long-term high-precision radial velocity data rules out the presence of hot Jupiters and confirms that this star is not in a binary system. We find that chemical tagging does not necessarily benefit from studying as many elements as possible, but instead from identifying and carefully measuring the abundances of those elements which show large star-to-star scatter at a given metallicity. Future searches employing data products from ongoing massive astrometric and spectroscopic surveys can be optimized by acknowledging this fact.Comment: ApJ, in press. Tables 2 and 4 are available in full in the "Other formats: source" downloa

    Kinetic models with randomly perturbed binary collisions

    Full text link
    We introduce a class of Kac-like kinetic equations on the real line, with general random collisional rules, which include as particular cases models for wealth redistribution in an agent-based market or models for granular gases with a background heat bath. Conditions on these collisional rules which guarantee both the existence and uniqueness of equilibrium profiles and their main properties are found. We show that the characterization of these stationary solutions is of independent interest, since the same profiles are shown to be solutions of different evolution problems, both in the econophysics context and in the kinetic theory of rarefied gases

    Quasiclassical negative magnetoresistance of a 2D electron gas: interplay of strong scatterers and smooth disorder

    Get PDF
    We study the quasiclassical magnetotransport of non-interacting fermions in two dimensions moving in a random array of strong scatterers (antidots, impurities or defects) on the background of a smooth random potential. We demonstrate that the combination of the two types of disorder induces a novel mechanism leading to a strong negative magnetoresistance, followed by the saturation of the magnetoresistivity ρxx(B)\rho_{xx}(B) at a value determined solely by the smooth disorder. Experimental relevance to the transport in semiconductor heterostructures is discussed.Comment: 4 pages, 2 figure

    Open Clusters IC 4665 and Cr 359 and a Probable Birthplace of the Pulsar PSR B1929+10

    Full text link
    Based on the epicyclic approximation, we have simulated the motion of the young open star clusters IC 4665 and Collinder 359. The separation between the cluster centers is shown to have been minimal 7 Myr ago, 36 pc. We have established a close evolutionary connection between IC 4665 and the Scorpius-Centaurus association -- the separation between the centers of these structures was 200\approx200 pc 15 Myr ago. In addition, the center of IC 4665 at this time was near two well-known regions of coronal gas: the Local Bubble and the North Polar Spur. The star HIP 86768 is shown to be one of the candidates for a binary (in the past) with the pulsar PSR B1929+10. At the model radial velocity of the pulsar Vr=2±50V_r= 2\pm50 km s1^{-1}, a close encounter of this pair occurs in the vicinity of IC 4665 at a time of -1.1 Myr. At the same time, using currently available data for the pulsar B1929+10 at its model radial velocity Vr=200±50V_r=200\pm50 km s1^{-1}, we show that the hypothesis of Hoogerwerf et al. (2001) about the breakup of the ζ\zetaOph--B1929+10 binary in the vicinity of Upper Scorpius (US) about 0.9 Myr ago is more plausible.Comment: 19 pages, 8 figure

    Anomalous Negative Magnetoresistance Caused by Non-Markovian Effects

    Full text link
    A theory of recently discovered anomalous low-field magnetoresistance is developed for the system of two-dimensional electrons scattered by hard disks of radius a,a, randomly distributed with concentration n.n. For small magnetic fields the magentoresistance is found to be parabolic and inversely proportional to the gas parameter, δρxx/ρ(ωcτ)2/na2. \delta \rho_{xx}/\rho \sim - (\omega_c \tau)^2 / n a^2. With increasing field the magnetoresistance becomes linear δρxx/ρωcτ\delta \rho_{xx}/\rho \sim - \omega_c \tau in a good agreement with the experiment and numerical simulations.Comment: 4 pages RevTeX, 5 figure

    Transport coefficients for inelastic Maxwell mixtures

    Get PDF
    The Boltzmann equation for inelastic Maxwell models is used to determine the Navier-Stokes transport coefficients of a granular binary mixture in dd dimensions. The Chapman-Enskog method is applied to solve the Boltzmann equation for states near the (local) homogeneous cooling state. The mass, heat, and momentum fluxes are obtained to first order in the spatial gradients of the hydrodynamic fields, and the corresponding transport coefficients are identified. There are seven relevant transport coefficients: the mutual diffusion, the pressure diffusion, the thermal diffusion, the shear viscosity, the Dufour coefficient, the pressure energy coefficient, and the thermal conductivity. All these coefficients are {\em exactly} obtained in terms of the coefficients of restitution and the ratios of mass, concentration, and particle sizes. The results are compared with known transport coefficients of inelastic hard spheres obtained analytically in the leading Sonine approximation and by means of Monte Carlo simulations. The comparison shows a reasonably good agreement between both interaction models for not too strong dissipation, especially in the case of the transport coefficients associated with the mass flux.Comment: 9 figures, to be published in J. Stat. Phy
    corecore