423 research outputs found

    Summary of recent NASA propeller research

    Get PDF
    Advanced high-speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. At these speeds, studies indicate that there is a 15 to near 40 percent block fuel savings and associated operating cost benefits for advanced turboprops compared to equivalent technology turbofan powered aircraft. Recent wind tunnel results for five eight to ten blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing nearfield cruise noise by about 6 dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some results are compared with propeller force and probe data. Also, analytical predictions are compared with some initial laser velocimeter measurements of the flow field velocities of an eightbladed 45 swept propeller. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller near-field noise data with linear acoustic theory indicate that the theory adequately predicts near-field noise for subsonic tip speeds but overpredicts the noise for supersonic tip speeds

    New test techniques and analytical procedures for understanding the behavior of advanced propellers

    Get PDF
    Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers

    Zeeman slowers made simple with permanent magnets in a Halbach configuration

    Full text link
    We describe a simple Zeeman slower design using permanent magnets. Contrary to common wire-wound setups no electric power and water cooling are required. In addition, the whole system can be assembled and disassembled at will. The magnetic field is however transverse to the atomic motion and an extra repumper laser is necessary. A Halbach configuration of the magnets produces a high quality magnetic field and no further adjustment is needed. After optimization of the laser parameters, the apparatus produces an intense beam of slow and cold 87Rb atoms. With a typical flux of 1 - 5 \times 10^10 atoms/s at 30 ms^-1, our apparatus efficiently loads a large magneto-optical trap with more than 10^10 atoms in one second, which is an ideal starting point for degenerate quantum gases experiments.Comment: 8+6 pages (article + appendices: calculation details, probe and oven description, pictures), 18 figures, supplementary material (movie, Mathematica programs and technical drawings

    Transport Phenomena in Mixed Oxide Fuel Pins

    Get PDF

    Thermodiffusion im System UO₂-CeO₂

    Get PDF

    A conjectural extension of Hecke’s converse theorem

    Get PDF
    We formulate a precise conjecture that, if true, extends the converse theorem of Hecke without requiring hypotheses on twists by Dirichlet characters or an Euler product. The main idea is to linearize the Euler product, replacing it by twists by Ramanujan sums. We provide evidence for the conjecture, including proofs of some special cases and under various additional hypotheses

    Research on electrochemical silvering process of brass elements

    Get PDF
    In the presented paper the authors attempted at analyzing the selected properties of silver coatings processed with electrochemical method on brass elements. The conducted research indicates that changes in cathode current density in the range 100 A ・ dm-2 to 333 A ・ dm-2 and the process time in the range of 60 s to 120 s have no effect on the basic properties of the obtained silver coatings (microhardness, corrosion resistance, adhesion), but it only seems to affect their appearance
    • 

    corecore