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Abstract We formulate a precise conjecture that, if true, extends the converse theorem
of Hecke without requiring hypotheses on twists by Dirichlet characters or an Euler
product. The main idea is to linearize the Euler product, replacing it by twists by
Ramanujan sums. We provide evidence for the conjecture, including proofs of some
special cases and under various additional hypotheses.
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1 Introduction

Let f ∈ Mk(�0(N ), ξ) be a classical holomorphic modular form of weight k, level N
and nebentypus character ξ , and define

S. B. and G. M. were partially supported by PRIN “Number Theory and Arithmetic Geometry”. A. R. B.,
M. L. and D. J. P. were partially supported by EPSRC Grant EP/K034383/1.
B. C. was partially supported by NSF Grant 1601407. No data were created in the course of this study.

B Andrew R. Booker
andrew.booker@bristol.ac.uk

1 Dipartimento di Matematica, Università di Genova, via Dodecaneso 35, 16146 Genova, Italy

2 School of Mathematics, University of Bristol, Bristol BS8 1TW, UK

3 The Heilbronn Institute for Mathematical Research, Bristol, UK

4 The American Institute of Mathematics, San Jose, CA, USA

5 Dipartimento di Matematica, Università di Milano, via Saldini 50, 20133 Milano, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11139-017-9953-y&domain=pdf


660 S. Bettin et al.

g(z) = (
√
Nz)−k f

(
− 1

Nz

)
. (1.1)

Let fn and gn denote the Fourier coefficients of f and g, respectively, and define

� f (s) = �C

(
s + k−1

2

) ∞∑
n=1

fnn
−s− k−1

2 and �g(s) = �C

(
s + k−1

2

) ∞∑
n=1

gnn
−s− k−1

2

(1.2)
for �(s) > k+1

2 , where �C(s) := 2(2π)−s�(s). Then � f (s) and �g(s) continue to
entire functions of finite order, apart from at most simple poles at s = 1±k

2 , and satisfy
the functional equation

� f (s) = i k N
1
2−s�g(1 − s). (1.3)

Conversely, when N ≤ 4, Hecke [11,12] (see also [1]) showed that the modular
forms of level N are characterized by these properties. Precisely, given sequences
{ fn}∞n=1, {gn}∞n=1 of at most polynomial growth, if the functions � f (s) and �g(s)
defined by (1.2) continue to entire functions of finite order and satisfy (1.3) then fn
and gn are the Fourier coefficients of modular forms of level N and weight k, related
by (1.1).

When N ≥ 5, Hecke’s proof no longer goes through, and in fact the vector space
of sequences { fn}∞n=1, {gn}∞n=1 satisfying the above conditions is infinite dimensional.
Weil [22] showed that one can recover the converse statement by assuming additional
functional equations for twisted L-functions

� f (s, χ) = �C(s + k−1
2 )

∞∑
n=1

fnχ(n)n−s− k−1
2 (1.4)

for primitive characters χ of conductor coprime to N . On the other hand, it has been
conjectured (see [5, Conjecture 1.2]) that if � f (s) and �g(s) have Euler product
expansions1 of the shape satisfied by primitive Hecke eigenforms then the single
functional equation (1.3) should suffice to imply modularity, without the need for
character twists. Some partial progress on this problem was made by Conrey and
Farmer [3] (see also [4]), who proved the conjecture for some values of N exceeding
4.

Onedrawbackof assuming anEuler product is that it imposes a non-linear constraint
on the Fourier coefficients fn, gn , so the solutions to (1.3) no longer form a vector
space. In turn, it is unclear how to make use of this constraint to extend Hecke’s proof
to higher level. In this paper we propose a replacement for the Euler product that, we
conjecture, characterizes the modular forms of any level N , yet retains the linearity of
(1.3):

Conjecture 1.1 Let ξ be a Dirichlet character modulo N, k a positive integer satisfy-
ing ξ(−1) = (−1)k , and { fn}∞n=1, {gn}∞n=1 sequences of complex numbers satisfying
fn, gn = O(nσ ) for some σ > 0. For q ∈ N, let

1 We regard the factors of �C(s + k−1
2 ) in (1.2) as Euler factors for the archimedean place.
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cq(n) =
∑

a (mod q)
(a,q)=1

e

(
an

q

)

be the associated Ramanujan sum, where e(x) := e2π i x , and define

� f (s, cq) = �C

(
s + k−1

2

) ∞∑
n=1

fncq(n)

ns+ k−1
2

and

�g(s, cq) = �C

(
s + k−1

2

) ∞∑
n=1

gncq(n)

ns+ k−1
2

for �(s) > σ + 1 − k−1
2 . For every q coprime to N, suppose that � f (s, cq) and

�g(s, cq) continue to entire functions of finite order and satisfy the functional equation

� f (s, cq) = i kξ(q)(Nq2)
1
2−s�g(1 − s, cq). (1.5)

Then f (z) := ∑∞
n=1 fne(nz) is an element of Mk(�0(N ), ξ).

To understand the motivation behind this conjecture, we first consider a more gen-
eral family of twists. Letχ (mod q) be aDirichlet character, not necessarily primitive,
and define

cχ (n) =
∑

a (mod q)
(a,q)=1

χ(a)e

(
an

q

)
, (1.6)

� f (s, cχ ) = �C

(
s + k−1

2

) ∞∑
n=1

fncχ (n)

ns+ k−1
2

and

�g(s, cχ ) = �C

(
s + k−1

2

) ∞∑
n=1

gncχ (n)

ns+ k−1
2

. (1.7)

Note that when χ is the trivial character mod q, cχ reduces to the Ramanujan sum, cq .
In Lemma 4.10, we show that if we start from a pair of modular forms f, g satisfying
(1.1), then � f (s, cχ ) and �g(s, cχ ) satisfy the functional equation

� f (s, cχ ) = i kξ(q)χ(−N )(Nq2)
1
2−s�g(1 − s, cχ ). (1.8)

When χ is primitive, we have cχ (n) = τ(χ)χ(n), where τ(χ) = ∑q
a=1 χ(a)e(a/q)

denotes the Gauss sum, and (1.8) reduces to the familiar functional equation for the
multiplicative twist � f (s, χ). More generally, when � f (s) possesses an Euler prod-
uct, we show in Lemma 4.12 that (1.8) is implied by the functional equation for
� f (s, χ∗), where χ∗ is the primitive character inducing χ . In particular, in the pres-
ence of an Euler product, (1.3) implies (1.5).
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Given any Q ∈ N and q | Q, we can view cχ for χ (mod q) as a function on
Z/QZ. One can show that as χ ranges over all characters of modulus dividing Q, the
functions cχ form an orthogonal basis for the space of functions on Z/QZ. Thus, any
twist of f with periodic coefficients and period coprime to N is a linear combination
of the twists by cχ . In this sense, (1.8) is the most general functional equation (from
twists with period coprime to the level) that one can expect.

Conjecture 1.1 arises from the speculation that any constraints on the solutions to
(1.3) imposed by the assumption of an Euler product are already implied by the extra
functional equations (1.8) that one obtains from taking χ equal to the trivial character
mod q. In Sect. 2, we prove five theorems that lend some support to the conjecture:

(1) Theorem 2.1 establishes Conjecture 1.1 for some values of N exceeding 4, fol-
lowing the methods of Conrey and Farmer [3].

(2) Theorem 2.2 proves Conjecture 1.1 under the additional assumption that f is
modular for some subgroup of finite index in SL2(Z) (not necessarily a congru-
ence subgroup).

(3) Theorem 2.3 proves Conjecture 1.1 under the additional assumption that | f | is
modular for some congruence subgroup.

(4) Theorem 2.4 proves Conjecture 1.1 under the additional assumptions that N is
prime and f is modular for the commutator subgroup of �0(N ). This establishes
a version of Theorem 2.2 for some cases of infinite index.

(5) Theorem 2.5 shows that for almost all primes q, the hypotheses of Conjecture 1.1,
togetherwith the expected analytic properties and functional equations of themul-
tiplicative character twists (1.4) for the primitive characters χ (mod q), suffice
to imply modularity. Particular examples of suitable q are given for some levels
outside the scope of Theorem 2.1.

To set these results in context, we note that one reason why Hecke’s argument fails for
N ≥ 5 is that there are counterexamples arising from more general kinds of modular
forms. If one believes that a twistless converse theorem is possible assuming an Euler
product, then it is reasonable to ask how these counterexamples are eliminated by the
Euler product. Points (2) and (3) above address two such generalizations of modular
forms, namely forms for non-congruence groups and forms for more general weight-k
multiplier systems (not necessarily of finite order).

Concerning point (5), Diaconu et al. [6] showed that if � f (s) is given by an Euler
product, then there exists a prime q (depending on N ) such that the analytic properties
and functional equations of the character twists (1.4) for all primitive χ of conductor
dividing q suffice to imply modularity. On the other hand, again under the assumption
of an Euler product, it follows from a theorem of Piatetski-Shapiro [17] that it suffices
to assume the expected properties of (1.4) for all primitive χ (mod p j ) for any fixed
prime p and all j ≥ 0. Point (5) can be seen as a complement to both of these results.
We conjecture that the proof of Theorem 2.5 can be extended to all sufficiently large
primes q, and we study this problem in detail in Sect. 3.
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A conjectural extension of Hecke’s converse theorem 663

2 Main results

LetH = {z ∈ C : 	(z) > 0} denote the upper half-plane. For any function h : H → C

and any matrix γ = (
a b
c d

) ∈ GL+
2 (R) = {M ∈ GL2(R) : det M > 0}, define

h|γ = (det γ )k/2(cz + d)−kh

(
az + b

cz + d

)
,

where k ∈ N is the integer appearing in Conjecture 1.1. (We assume that k is fixed
from now on and suppress it from the notation.) Note that this defines a right action,
i.e. h|(γ1γ2) = (h|γ1)|γ2 for any γ1, γ2 ∈ GL+

2 (R). We extend the action linearly
to the group algebra C[GL+

2 (R)], i.e. for γ = ∑
i ciγi ∈ C[GL+

2 (R)] we define
h|γ = ∑

i ci h|γi .
Let f be as in Conjecture 1.1, and define g(z) = ∑∞

n=1 gne(nz). Then, by Hecke’s
argument [15, Theorem 4.3.5], the fact that� f (s, c1) and�g(s, c1) continue to entire
functions of finite order and satisfy (1.5) for q = 1 is equivalent to the identity

f | ( −1
N

) = g. Writing T = (
1 1
1

)
and W = ( −1

N

)
T−1

( −1
N

)−1 = (
1
N 1

)
, since

f and g are given by Fourier series, we have f |T = f |W = f .
Given amatrix γ = (

a b
c d

) ∈ �0(N ), we define ξ(γ ) = ξ(d). Since ξ(−1) = (−1)k ,
we have f |(−I ) = ξ(−I ) f , and thus f |γ = ξ(γ ) f for every γ ∈ 〈−I, T,W 〉. To
prove that f ∈ Mk(�0(N ), ξ), it suffices to verify this equality for every γ ∈ �0(N ),
since the holomorphy of f at cusps follows from modularity and the growth estimate
fn = O(nσ ).
Note that if γ, γ ′ ∈ �0(N ) have the same top row then γ ′γ −1 is a power of W , so

that f |γ ′ = f |γ . Thus, f |γ depends only on the top row of γ . With this in mind, we
will write γq,a to denote any element of �0(N ) with top row ( q −a ).

Theorem 2.1 Conjecture 1.1 is true for N ≤ 9 and N ∈ {11, 15, 17, 23}.
Proof The following table shows, for each N in the statement of the theorem, minimal
generating sets for �0(N ), verified with Sage [20]:

N Generators N Generators

1 {T,W } 8 {−I, T,W, γ3,1}
2 {T,W } 9 {−I, T,W, γ2,1}
3 {T,−W } 11 {−I,W, γ2,1, γ3,1}
4 {−I, T,W } 15 {−I, T,W, γ2,1, γ4,1, γ11,4}
5 {T,W, γ2,1} 17 {T,W, γ2,1, γ3,1, γ6,1}
6 {−I, T,W, γ5,2} 23 {−I, T,W, γ2,1, γ4,1, γ6,1, γ10,−3}
7 {T,W, −γ2,1}

In particular, for N ≤ 4, �0(N ) is generated by −I , T and W , so there is nothing
to prove. For all other levels we apply the methods of Conrey and Farmer [3], in the
form of Lemmas 4.1, 4.3 and 4.4.

For odd values of N , Lemma 4.1 with q = 2 implies that f |γ2,1 = ξ(2) f . In view
of the table, this establishes the claim for N ∈ {5, 7, 9}.
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For N ∈ {8, 11, 15, 17, 23} we obtain values of q ∈ {3, 4, 6} for which f |γq,1 =
ξ(q) f from Lemma 4.3. For N ∈ {8, 11, 17} these are sufficient to establish the claim.

It remains only to prove the claim for N = 6, 15, 23, for which we need to show
modularity with respect to the generators γ5,2, γ11,4, γ10,−3, respectively. For N = 6
we have the equalities

(
5 −1
6 −1

)
= −TW−1 and

(
5 1

−6 −1

)
= −T−1W,

so Lemma 4.1 with q = 5 takes the form

f

∣∣∣∣[γ − ξ(−1)
] (1 2/5

1

)
+ f

∣∣∣∣[γ −1 − ξ(−1)
] (1 −2/5

1

)
= 0,

where γ = ( 5 −2
−12 5

)
. Applying Lemma 4.4 with α = 4/5 and ζ = −1, we obtain

f |γ = ξ(−1) f .
For N = 15 we have the equalities

(
8 −1

−15 2

)
= T−1

(
2 −1
15 −7

)−1

,

(
8 1
15 2

)
=

(
2 −1

−15 8

)−1

,

(
8 −3
75 −28

)
= −

(
2 −1
15 −7

)
T

(
11 −4

−30 11

)
,

(
8 3
45 17

)
= −

(
2 −1
15 −7

)
T

(
11 −4

−30 11

)−1

,

so Lemma 4.1 with q = 8 takes the form

ξ(7) f

∣∣∣∣[γ − ξ(11)
] (1 3/8

1

)
+ ξ(7) f

∣∣∣∣[γ −1 − ξ(11)
] (1 −3/8

1

)
= 0,

where γ = ( 11 −4
−30 11

)
. Applying Lemma 4.4 with α = 3/4 and ζ = −1, we obtain

f |γ = ξ(11) f .
For N = 23 we have the equalities

(
3 −1

−23 8

)
= −

(
4 −1

−23 6

)(
6 −1

−23 4

)−1 (10 3
23 7

)−1

and
(
3 1
23 8

)
= −

(
2 −1
23 −11

)(
10 3
23 7

)
,

so Lemma 4.1 with q = 3 takes the form

ξ(11) f

∣∣∣∣[γ − ξ(7)
] (1 −1/3

1

)
+ ξ(10) f

∣∣∣∣[γ −1 − ξ(10)
] (1 1/3

1

)
= 0,
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where γ = (
10 3
23 7

)
. Applying Lemma 4.4 with α = −2/3 and ζ = −ξ(8), we obtain

f |γ = ξ(7) f . ��
Theorem 2.2 Assume the hypotheses of Conjecture 1.1. Suppose that there is a
subgroup H < �1(N ) of finite index such that f |γ = f for all γ ∈ H. Then
f ∈ Mk(�0(N ), ξ).

Proof We may assume without loss of generality that H contains T and W . By
Lemma 4.1, for any prime q � N ,

q−1∑
a=1

f

∣∣∣∣
[
γq,a − ξ(q)

](1 a
q

0 1

)
= 0. (2.1)

Put h = [�0(N ) : H ], and let g1, . . . , gh ∈ �0(N ) be coset representatives for
H\�0(N ). Replacing gi byWgi if necessary,wemayassumewithout loss of generality
that gi is not upper triangular. For each γq,a ∈ �0(N ), there exists i ∈ {1, . . . , h} such
that γq,a ∈ Hgi , so that f |γq,a = f |gi . Rearranging (2.1), we get

h∑
i=1

f

∣∣∣∣[gi − ξ(gi )
] κi∑


=1

(
1 ai


q
0 1

)
= 0,

where
⋃h

i=1{ai
 : 
 = 1, . . . , κi } is a disjoint partition of {1, . . . , q − 1}.
For each i ∈ {1, . . . , h}, since [�0(N ) : g−1

i Hgi ] = [�0(N ) : H ] < ∞, there
exists mi ∈ N such that

g−1
i Hgi T

mi = g−1
i Hgi .

Setting m = lcm(m1, . . . ,mh), we have gi T m ∈ Hgi for all i . Then f |gi T m = f |gi ,
and thus f |[gi − ξ(gi )] has a Fourier expansion:

f
∣∣[gi − ξ(gi )

] =
∑
n∈Z

λi (n)e
(
n z
m

)
. (2.2)

Therefore,

h∑
i=1

f

∣∣∣∣[gi − ξ(gi )
] κi∑


=1

(
1 ai


q
0 1

)
=

∑
n∈Z

h∑
i=1

λi (n)

(
κi∑


=1

e
(
n ai

qm

))
e
(
n z
m

) = 0,

i.e. for n ∈ Z,
h∑

i=1

λi (n)

(
κi∑


=1

e
(
n ai

qm

))
= 0. (2.3)

Fix n ∈ Z\ {0}. By Dirichlet’s theorem, we can choose distinct primes q1, . . . , qh �

mnN and integers a1, . . . , ah such that γqi ,ai ∈ 〈T 〉gi ⊆ Hgi for each i . Thus, from
(2.3) for q ∈ {q1, . . . , qh}, we obtain a system of linear equations of the shape
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h∑
i=1

( κi, j∑

=1

e

(
n
a( j)
i


q jm

))
λi (n) = 0 for j ∈ {1, . . . , h}, (2.4)

with κi,i > 0 for every i ∈ {1, . . . , h}. By Lemma 4.5,

det

⎛
⎝
[ κi, j∑


=1

e

(
n
a( j)
i


q jm

)]

1≤i, j≤h

⎞
⎠ �= 0,

so (2.4) has only the trivial solution λ1(n) = · · · = λh(n) = 0.
Since n ∈ Z \ {0} was arbitrary, it follows from (2.2) that f |[gi − ξ(gi )] is a

constant, say Ci . Since g−1
i Hgi ∩ H has finite index in SL2(Z), there exists γ =(

a b
c d

) ∈ g−1
i Hgi ∩ H with c �= 0. Then Ci = Ci |γ = (cz + d)−kCi . Since k > 0,

we must have Ci = 0, i.e. f |gi = ξ(gi ) f . This concludes the proof. ��
Theorem 2.3 Assume the hypotheses of Conjecture 1.1, and suppose that there is a
congruence subgroup H < �0(N ) such that

∣∣( f |γ )(z)
∣∣ = | f (z)| for all γ ∈ H. Then

f ∈ Mk(�0(N ), ξ).

Proof If f = 0 then the conclusion is trivially true, so from now on assume f �= 0.
Let M denote the level of H , so that H ⊇ �(M). Since f |T = f |W = f and
�1(N ) is generated by {T,W }∪�(M), we may assume without loss of generality that
H ⊇ �1(N ). By Theorem 3.2, there exists a prime q ≡ 1 (mod N ) such that �1(N )

is generated by {T,W, γq,a : 1 ≤ a < q}. By Lemma 4.6, there exists m ∈ N such
that q | m and { fm, gm} �= {0}. Since ( −1

N

)
normalizes �1(N ), we may swap the

roles of f and g if necessary, so as to assume that fm �= 0.
For any γ ∈ �1(N ), the function ( f |γ )(z)/ f (z) is meromorphic on H and has

modulus 1; by the maximum modulus principle, it must be a constant, say ε(γ ). By
Lemma 4.1, we have

0 =
∑

a (mod q)
(a,q)=1

f

∣∣∣∣[γq,a − 1
] (1 a/q

1

)
=

∑
a (mod q)

(a,q)=1

[
ε(γq,a) − 1

]
f

∣∣∣∣
(
1 a/q

1

)
.

Considering the Fourier expansion, this implies that

∑
a (mod q)

(a,q)=1

[
ε(γq,a) − 1

]
fne

(
an

q

)
= 0 for all n.

In particular, taking n = m, we have

∑
a (mod q)

(a,q)=1

[
ε(γq,a) − 1

] = 0,
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A conjectural extension of Hecke’s converse theorem 667

and since |ε(γq,a)| = 1 for every a, it follows that ε(γq,a) = 1. Therefore, f |γ = f
for all γ ∈ �1(N ). Applying Theorem 2.2 with H = �1(N ), we conclude that
f ∈ Mk(�0(N ), ξ). ��
Theorem 2.4 Assume the hypotheses of Conjecture 1.1. Suppose that N is prime and
that f |γ1γ2 = f |γ2γ1 for every pair γ1, γ2 ∈ �0(N ). Then f ∈ Mk(�0(N ), ξ).

Proof Let H be the smallest subgroup of�0(N ) containing T ,W and all commutators
γ1γ2γ

−1
1 γ −1

2 for γ1, γ2 ∈ �0(N ). Then H is a normal subgroup with abelian quotient
H\�0(N ), and f |γ = f for all γ ∈ H . If N ∈ {2, 3} then 〈H,−I 〉 = �0(N ) and
there is nothing to prove, so we assume henceforth that N ≥ 5.

Let R = {r ∈ Z : 2 ≤ |r | < 1
2N }, and for each r ∈ R, fix a matrix γr,1 with top

row ( r −1 ). Then, by Lemma 4.7, for any prime q � N and a coprime to q, we have

γq,a = ±
l∏

i=1

τi ,

where each τi is an element of {T, T−1,W,W−1, γ −1
r,1 : r ∈ R}. Since H\�0(N ) is

abelian, we are free to permute the τi without changing the coset H
∏

τi . Hence, since
H contains 〈T,W 〉, we may write

Hγq,a = H(−I )ε
∏
r∈R

γ
−er
r,1 ,

for some ε ∈ {0, 1} and non-negative integers er (depending on q and a), satisfying∑
r∈R er ≤ log2 q.
Now, fix s ∈ R, n ∈ Z \ {0} and X ∈ N, and let Q = Q(s, n, X) denote the

set of primes q satisfying qs ≡ 1 (mod N ), q � n and q ≤ X . As in the proof of
Theorem 2.2, we consider (2.1) for all primes q ∈ Q. Let g1, . . . , gh be a minimal
set of representatives for the cosets Hγq,a of all matrices occurring there. By the
above, we may take each gi of the form (−I )ε

∏
r∈R γ

−er
r,1 with ε ∈ {0, 1}, er ≥ 0

and
∑

r∈R er ≤ log2 X . In particular, Hγ −1
s,1 = Hγq,−1 for every q ∈ Q, so we

may take g1 = γ −1
s,1 . By Dirichlet’s theorem, we have #Q � X/ log X , and thus

h ≤ 2(1 + log2 X)N−3 ≤ #Q for all sufficiently large X .
For each i ∈ {1, . . . , h}, we have f |gi T = f |Tgi = f |gi , so f |[gi − ξ(gi )]

has a Fourier expansion as in (2.2), with m = 1. In turn, this leads to the system
of linear equations (2.4), where we take {q j } to be any subset of Q of cardinality h.
Applying Lemma 4.8, by appropriate permutation of the rows and columns we can
select a square subsystem for which the diagonal entries are non-zero. Since the coset
Hg1 occurs in every row, the column i = 1 is necessarily one of the variables in the
subsystem.

Hence, by Lemma 4.5, we have λ1(n) = 0. Since n ∈ Z \ {0} was arbitrary, we
thus have that f |[γ −1

s,1 − ξ(s)] is a constant, say C . Clearly C |γ = C for all γ ∈
γs,1Hγ −1

s,1 ∩ H = H . Taking γ = W , it follows that C = 0, whence f |γ −1
s,1 = ξ(s) f .
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Finally, Lemma 4.7 implies that �0(N ) is generated by −I , T , W and γs,1 for s ∈ R,
so f |γ = ξ(γ ) f for all γ ∈ �0(N ). ��
Theorem 2.5 Assume the hypotheses of Conjecture 1.1. There is a set Q of prime
numbers such that

(i) Q has density 1 in the set of all primes, and
(ii) if there exists q ∈ Q such that the multiplicative twists � f (s, χ) and �g(s, χ),

for all primitive characters χ (mod q), continue to entire functions of finite order
and satisfy the functional equation

� f (s, χ) = i kξ(q)χ(N )q−1τ(χ)2(Nq2)
1
2−s�g(1 − s, χ), (2.5)

then f ∈ Mk(�0(N ), ξ).

In particular, for each N in the following table, the set Q contains every prime q � N
in the indicated interval.

N q N q

10 (11, 109) 18 (53, 109)
12 (35, 109) 19 (37, 109)
13 (5, 109) 20 (79, 109)
14 (43, 109) 21 (83, 109)
16 (47, 109) 22 (43, 109)

Proof Let Q be the set of primes q � N such that Hq ⊇ �1(N ), in the notation of
Sect. 3. By Theorem 3.2, Q has density 1 in the set of all primes, so (i) holds, and the
fact that Q contains the numbers indicated in the table is the content of Theorem 3.3.

Let q ∈ Q. Then by [15, Lemmas 4.3.9, 4.3.13], the assumed analytic properties of
� f (s, χ) and �g(s, χ) described in (ii), together with the functional equation (2.5)
for all primitive χ (mod q), imply the equality

f

∣∣∣∣
[
γq,a − ξ(q)

](1 a
q

0 1

)
= f

∣∣∣∣
[
γq,b − ξ(q)

](1 b
q

0 1

)

for any integers a, b coprime to q. By Lemma 4.1, it follows that f |γq,a = ξ(q) f
for every a coprime to q. By the definition of Q, we thus have f |γ = ξ(γ ) f for
every γ ∈ Hq ⊇ �1(N ). Applying Theorem 2.2 with H = �1(N ), we conclude that
f ∈ Mk(�0(N ), ξ). ��

3 Generating �1(N)

In this section, we consider the question of when the elements of �0(N ) with a fixed
upper-left entry generate a subgroup containing �1(N ). By the proof of Theorem 2.5,
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A conjectural extension of Hecke’s converse theorem 669

any such upper-left entry gives sufficient conditions to imply modularity using twists
of a single modulus.

For any q ∈ N coprime to N , let Hq denote the subgroup of �0(N ) generated by
the matrices

{(
A B
C D

)
∈ �0(N ) : A = q

}
.

Conjecture 3.1 There exists q0 = q0(N ) such that Hq ⊇ �1(N ) for every q ≥ q0
coprime to N.

Theorem 3.2 Hq ⊇ �1(N ) holds for almost all q ∈ N coprime to N and for almost
all primes q � N, i.e.

#{q ∈ N : (q, N ) = 1, Hq ⊇ �1(N ), q ≤ x} = (
ϕ(N )
N + o(1)

)
x (3.1)

and
#{q prime : q � N , Hq ⊇ �1(N ), q ≤ x} = (1 + o(1))π(x) (3.2)

as x → ∞.

Proof For q ∈ N coprime to N , set

�q =
{(

A B
C D

)
∈ �0(N ) : A ≡ qn(mod N ) for some n ∈ N

}
.

Then �q is a group satisfying �1(N ) ∪ Hq ⊆ �q ⊆ �0(N ), and we have

Hq ⊇ �1(N ) ⇐⇒ Hq = �q .

Consider a fixed q0 ∈ N coprime to N , and let q̄0 be a multiplicative inverse of q0
(mod N ). Then, for any q ≡ q0 (mod N ),

T =
(

q 1
q(N + q̄0) − 1 q̄0 + N

)(
q 1

qq̄0 − 1 q̄0

)−1

,

and

W =
(

q 1
qq̄0 − 1 q̄0

)−1 ( q q + 1
qq̄0 − 1 (q + 1)q̄0 − 1

)
.

so that Hq and �q = �q0 contain 〈T,W 〉.
Let

{T,W } ∪
{
γi =

(
Ai Bi
NCi Di

)
: 1 ≤ i ≤ h

}
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be a fixed generating set for �q0 , with γ1 =
(

q0 1
q0q̄0−1 q̄0

)
. For i ≥ 2, replacing γi by

γ
ni
1 γi for a suitable ni , we may assume that Ai ≡ q0 (mod N ). Also, we may assume

that Ai �= 0, since otherwise N = 1 and γi is contained in 〈T,W 〉.
Next, we modify γ1, . . . , γh by multiplying by powers of T andW . First, multiply-

ing by Wmi on the left leaves Ai unchanged and replaces Ci by Ci + mi Ai . Hence,
by Dirichlet’s theorem, we may take C1, . . . ,Ch to be distinct primes not dividing N .
Second, by the Chinese remainder theorem, we can choose q1 ∈ N satisfying q1 ≡ q0
(mod N ) and q1 ≡ Ai (mod Ci ) for every i .Multiplying on the left by T (q1−Ai )/(NCi )

replaces each Ai by q1.
Now, let q ∈ Nwith q ≡ q0 (mod N ). Suppose that the divisors of q−q1 represent

all invertible residue classes modulo Nq1, i.e.

{d + Nq1Z : d ∈ N, d | (q − q1)} ⊇ (Z/Nq1Z)×. (3.3)

For i = 1, . . . , h, let di be a divisor of q − q1 satisfying di ≡ Ci (mod Nq1). Then
(di , N ) = 1, so Ndi | (q − q1). Hence,

T
q−q1
Ndi W

di−Ci
q1

(
q1
NCi

)
=

(
q
Ndi

)
,

so that γi is contained in Hq . Therefore Hq = �q0 = �q .
Erdős [7] showed that almost all q ∈ N satisfy (3.3). Therefore, the set of q ∈ N

such that q ≡ q0 (mod N ) and Hq = �q has density 1/N . Letting q0 run through
a set of representatives for the invertible residue classes mod N yields (3.1). For the
prime case, we similarly apply Lemma 4.9 with (p0, q) = (q1, Nq1) to see that almost
all q � N satisfy (3.3), and this leads to (3.2). ��
Theorem 3.3 For each N in the following table, Hq ⊇ �1(N ) holds for q ∈ N with
(q, N ) = 1 and for primes q � N in the indicated intervals.

N (q, N ) = 1 Prime q � N N (q, N ) = 1 Prime q � N

5 (44, 109) (0, 109) 14 (55, 109) (43, 109)
6 (1, 109) (0, 109) 15 (91, 109) (31, 109)
7 (20, 109) (0, 109) 16 (63, 109) (47, 109)
8 (15, 109) (7, 109) 17 (390, 105) (101, 109)
9 (136, 109) (2, 109) 18 (55, 109) (53, 109)
10 (39, 109) (11, 109) 19 (360, 105) (37, 109)
11 (84, 109) (2, 109) 20 (119, 105) (79, 109)
12 (35, 109) (23, 109) 21 (230, 105) (83, 109)
13 (168, 109) (5, 109) 22 (175, 105) (43, 109)

Proof We applied two strategies to verify the statement computationally. First, we
used Lemma 4.14 and Corollary 4.15 to compute a list L of all elements of 〈T,W 〉
of height up to some bound chosen by trial and error (e.g. for N = 13 we chose
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A conjectural extension of Hecke’s converse theorem 671

the bound 5500, which yielded 290841 words in T,W ). We then used Sage [20] to
compute a generating set {g1, . . . , gh} for�1(N ), and for each generator we computed
every word of the form w1g

±1
i w2, for w1, w2 ∈ L . Combining this with Lemma 4.13

and a simple sieve, we obtained sufficient conditions to establish the claim for the vast
majority of q.

For the relatively small number of values of q remaining, we computed the expan-
sions of every element γq,a for 1 ≤ a ≤ q in terms of the generators S = ( −1

1

)
and

T = (
1 1
1

)
of SL2(Z), and presented SL2(Z) ∼= 〈S, T : S4 = S2(ST )3 = 1〉 as an

abstract group to GAP [19].We then used GAP’s implementation of the Todd–Coxeter
algorithm [21] to attempt to compute the index [SL2(Z) : Hq ]. When this terminated
with a number equal to the expected index [SL2(Z) : �q ], we obtained the claim for
q.

The first strategy tends to work better at finding prime values of q, which explains
the discrepancy in the sizes of the intervals for larger values of N , where there are
eventually too many exceptions to test by the second method in a reasonable amount
of time.

For someq (those forwhich theTodd–Coxeter algorithmappeared not to terminate),
our results were inconclusive, though we expect that Hq � �1(N ) in those cases. In
a very small number of cases, Hq has finite index in SL2(Z) but is not the full group
�q . ��

4 Lemmas

Lemma 4.1 Let q ∈ N with (q, N ) = 1. The assumptions of Conjecture 1.1 imply
the relation ∑

a (mod q)
(a,q)=1

f

∣∣∣∣
[
γq,a − ξ(q)

](1 a
q

0 1

)
= 0, (4.1)

where γq,a is any element of �0(N ) with top row ( q −a ).

Proof From Hecke [15, Theorem 4.3.5] we know that the functional equation in Con-
jecture 1.1 is equivalent to the equation

∞∑
n=1

fncq(n)e2π inz = (−1)kξ(q)(Nq2)−
k
2 z−k

∞∑
n=1

gncq(n)e
2π i −n

Nq2z . (4.2)

In particular we find for q = 1, that f |
(

0 −N− 1
2

N
1
2 0

)
= g, where g(z) =∑∞

n=1 gne
2π inz . Now we shall note that (4.2) may be rewritten as

∑
a (mod q)

(a,q)=1

f

∣∣∣∣
(
1 a

q
0 1

)
= ξ(q)

∑
c (mod q)

(c,q)=1

g

∣∣∣∣
(

−N
1
2 c N− 1

2 q−1

−N
1
2 q 0

)
.
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Combining this with the matrix identity

(
0 −N− 1

2

N
1
2 0

)(
−N

1
2 c N− 1

2 q−1

−N
1
2 q 0

)
=

(
q 0

−Nc q−1

)
=

(
q −a

−Nc s

)(
1 a

q
0 1

)
,

where a = a(c) is chosen so that Nca ≡ −1 (mod q) and s = (Nac + 1)/q, we
derive ∑

a (mod q)
(a,q)=1

f

∣∣∣∣
(
1 a

q
0 1

)
= ξ(q)

∑
c (mod q)

(c,q)=1

f

∣∣∣∣
(

q −a
−Nc s

)(
1 a

q
0 1

)
.

Here the summation over cmay be replaced by the summation over a (mod q), (a, q)

= 1, by choosing appropriate representatives, thereby proving the lemma. ��
Lemma 4.2 Suppose that h : H → C is a holomorphic function, M ∈ SL2(R) is
elliptic of infinite order, and ζ ∈ C

× is a root of unity such that h|M = ζh. Then
h = 0.

Proof This is an extension of Weil’s Lemma [2, Lemma 1.5.1], which is the special
case ζ = 1. It can be proven by the same method or, alternatively, derived as a
consequence, as follows. Suppose that ζ has order n, and let M = (

a b
c d

)
. Then we

have

(cz + d)−knh

(
az + b

cz + d

)n

= (
(h|M)(z)

)n = h(z)n .

Applying Weil’s Lemma to hn (and the weight-kn slash operator), we conclude that
hn = 0, whence h = 0. ��
Lemma 4.3 Assume the hypotheses of Conjecture 1.1, and suppose that N = qs −1,
where q, s ∈ {3, 4, 6}. Then f |γq,1 = ξ(q) f .

Proof Note that ϕ(q) = ϕ(s) = 2, and we have γq,±1 = γ −1
s,∓1 =

(
q ∓1

∓N s

)
. Hence,

applying Lemma 4.1 to both q and s, we obtain

f
∣∣[γq,1 − ξ(q)

] = − f

∣∣∣∣[γq,−1 − ξ(q)
] (1 −2/q

1

)

= ξ(s) f

∣∣∣∣[γs,1 − ξ(s)
]
γ −1
s,1

(
1 −2/q

1

)

= − ξ(s) f

∣∣∣∣[γs,−1 − ξ(s)
] (1 −2/s

1

)
γ −1
s,1

(
1 −2/q

1

)

= f

∣∣∣∣[γq,1 − ξ(q)
]
γ −1
q,1

(
1 −2/s

1

)
γ −1
s,1

(
1 −2/q

1

)
.

Writing M = γ −1
q,1

( 1 −2/s
1

)
γ −1
s,1

( 1 −2/q
1

) =
(

1 −2/q
2q−2/s −3+4/(qs)

)
, we thus have

f
∣∣[γq,1 − ξ(q)

][I − M] = 0.
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A conjectural extension of Hecke’s converse theorem 673

Note that | tr M | < 2 and tr M /∈ Z, so M is elliptic of infinite order. Applying
Lemma 4.2 to h = f |[γq,1 − ξ(q)], we obtain f |γq,1 = ξ(q) f . ��
Lemma 4.4 Assume the hypotheses of Conjecture 1.1, and suppose there exist γ =(
A B
C D

) ∈ �0(N ), α ∈ Q and a root of unity ζ ∈ C
× such that Cα /∈ Z, |A+D+Cα| <

2, and

f
∣∣[γ −1 − ξ(A)

] = ζ f

∣∣∣∣[γ − ξ(D)]
(
1 α

1

)
.

Then f |γ = ξ(D) f .

Proof We have

−ξ(D)ζ f |[γ − ξ(D)] = −ξ(D) f

∣∣∣∣[γ −1 − ξ(A)
] (1 −α

1

)

= f

∣∣∣∣[γ − ξ(D)]γ −1
(
1 −α

1

)
.

Note that tr
(
γ −1

(
1 −α

1

)) = A + D + Cα. By hypothesis this is non-integral and has
modulus less than 2, so γ −1

(
1 −α

1

)
is elliptic of infinite order. Applying Lemma 4.2,

we obtain f |γ = ξ(D) f . ��
Lemma 4.5 Let h, n,m ∈ N, and let q1, . . . , qh be distinct primes with q j � mn for
all j . For every j , let si, j ⊆ {1, . . . , q j − 1}, with si1, j ∩ si2, j = ∅ for all i1 �= i2 (we
do not assume that si, j �= ∅). Let Si, j = ∑

a∈si, j e
( na
mq j

)
. Suppose that si,i �= ∅ for

every i . Then det
([Si, j ]1≤i, j≤h

) �= 0.

Proof Replacing (m, n) by (m/ gcd(m, n), n/ gcd(m, n)) if necessary, we may
assume without loss of generality that (m, n) = 1. We prove the claim by induc-
tion on h.

Suppose first that h = 1. Each e
( na
mq1

)
is the ath power of e

( n
mq1

) =: ζmq1 , which is
a primitive mq1th root of unity. By hypothesis s1,1 is not empty, so S1,1 is the value at
ζmq1 of a non-constant polynomial P ∈ Q[x]. Note that P(x) = xQ(x) for some non-
zero Q ∈ Q[x] (since s1,1 ⊆ {1, . . . , q1−1}), and that the degree of Q is atmost q1−2.
The degree of the extension Q(ζmq1)/Q is ϕ(mq1) = ϕ(m)ϕ(q1) ≥ ϕ(q1) = q1 − 1.
Hence S1,1 = P(ζmq1) = ζmq1Q(ζmq1) �= 0. This concludes the proof for h = 1.

Suppose h ≥ 2 and expand det[Si, j ] with respect to the first line. We get an
expression of the form P(ζmq1) for some polynomial P ∈ Q(ζmq2 , . . . , ζmqh )[x]. We
claim that P is not constant. To see this, let a ∈ s1,1 (such a exists because s1,1 �= ∅).
Then a /∈ si,1 for any i �= 1, since si1,1 ∩ si2,1 = ∅ for i1 �= i2. Thus, the coefficient of
xa in P(x) is the determinant of the cofactor matrix for S1,1. This determinant satisfies
all hypotheses of the lemma for h − 1 and primes q2, . . . , qh ; hence it is non-zero by
the inductive hypothesis.

Note that P(x) = xQ(x) for some non-zero Q ∈ Q(ζmq2 , . . . , ζmqh )[x] (since
each si,1 ⊆ {1, . . . , q1 − 1}), and that the degree of Q is ≤ q1 − 2. By coprimal-
ity assumptions, the degree of the extension Q(ζmq1 , . . . , ζmqh )/Q(ζmq2 , . . . , ζmqh )
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is ϕ(mq1q2 · · · qh)/ϕ(mq2 · · · qh) = ϕ(q1) = q1 − 1. Hence Q(ζmq1) �= 0. Thus
det[Si, j ] = P(ζmq1) = ζmq1Q(ζmq1) �= 0. ��
Lemma 4.6 Assume the hypotheses of Conjecture 1.1, and suppose that f is not
identically 0. Then for any prime q � N, there exists n ∈ N such that q | n and
{ fn, gn} �= {0}.
Proof Suppose that the conclusion is false for some prime q � N , so that fn = gn = 0
for every n divisible by q. Then we have fncq(n) = − fn and gncq(n) = −gn for
every n, so that

−1 = � f (s, cq)

� f (s, c1)
= �g(1 − s, cq)

�g(1 − s, c1)
.

On the other hand, (1.5) applied to c1 and cq shows that

� f (s, cq)

� f (s, c1)
= ξ(q)q1−2s �g(1 − s, cq)

�g(1 − s, c1)
,

so ξ(q)q1−2s = 1. Since q > 1, this is a contradiction. ��
Lemma 4.7 Let N be a prime, and for each r ∈ Z with 2 ≤ |r | < 1

2N, let γr,1 ∈
�0(N ) be a matrix with top row ( r −1 ). Then any matrix

(
A B

CN D

) ∈ �0(N ) may be

written in the form ±τ1τ2 · · · τl with τi ∈ {T, T−1,W,W−1, γ −1
r,1 : 2 ≤ |r | < 1

2N }
for each i = 1, . . . , l, in such a way that

#{i : τi ∈ {γ −1
r,1 }} ≤ log2(|A|).

Proof If C = 0 then
(

A B
CN D

) = ±T α for some choice of sign and α ∈ Z. In the
general case we may multiply on the left by a power of T to replace A by any integer
A′ such that A′ ≡ A (mod CN ). Choosing A′ such that |A′| ≤ 1

2 |CN |, we also have
|A′| ≤ |A|. Similarly we may multiply on the left by W and replace C by any integer
C ′ ≡ C (mod A′) with |C ′| ≤ 1

2 |A′|.
Repeating this process will either lead to C = 0 or will eventually stagnate. Thus

wemay assume now that |A| ≤ 1
2 |CN | and 0 < |C | ≤ 1

2 |A|. In particular, this implies
that N ≥ 4, so N is an odd prime. Let r be the nearest integer to the fraction CN/A
(note that A �= 0 since (A, N ) = 1), rounded toward 0 in the case of a tie. We have
2 ≤ |CN/A| ≤ 1

2N , and thus 2 ≤ |r | < 1
2N . Multiplying on the left by γr,1, the new

top-left corner is r A − CN = A(r − CN
A ), which does not exceed 1

2 |A| in absolute
value. Thus, by repeating this process we eventually end up in the case C = 0, having
used at most log2(|A|) matrices γr,1. ��
Lemma 4.8 Let A be an n × n matrix over a ring, with non-zero rows. Then there
exists m ∈ {1, . . . , n} and n× n permutation matrices P and Q such that P AQ takes

the block form

(
Â 0
C D

)
, where Â is of size m ×m and has non-zero diagonal entries.
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Proof Denote the entries of A by ai j . For any S ⊆ {1, . . . , n}, define

mS = #{ j : ai j �= 0 for some i ∈ S}.

Note that for S = {1, . . . , n} we have mS ≤ #S. Hence, there is a minimal non-
empty set R ⊆ {1, . . . , n} satisfying mR ≤ #R. Since A has non-zero rows, we have
mS > 0 whenever S �= ∅. From this and the minimality of R it follows thatmR = #R.
Moreover, for any S ⊆ R we have mS ≥ #S.

By Hall’s marriage theorem [9], it follows that there is a subset C ⊆ {1, . . . , n} and
a bijection i : C → R such that ai( j) j �= 0 for every j ∈ C . Writing m = #C = #R
and replacing A by PAQ for appropriate permutation matrices P and Q, we may
assume that C = R = {1, . . . ,m} and i( j) = j . The block form of A then follows
from the definition of mS . ��

Lemma 4.9 Given p0, a, q ∈ Z with p0 �= 0 and (a, q) = 1, define

P(p0; a, q) = {p prime : ∃d ∈ N such that d ≡ a (mod q) and p ≡ p0 (mod d)}

and

P(p0; q) =
⋂

1≤a≤q
(a,q)=1

P(p0; a, q).

Then

#{p ∈ P(p0; q) : p ≤ x} = (1 + o(1))π(x) as x → ∞.

Proof This is proven for p0 = 1 in [10], uniformly for q ≤ 2(1−ε) log log x . One can
generalize the proof to all p0 �= 0, and if one is not concerned with the uniformity in
q a simpler proof suffices. For completeness we give the argument here.

For a character χ modulo q and a ∈ Z with (a, q) = 1 let

dχ (n) :=
∑
d|n

χ(d), d(n; a) :=
∑
d|n

d≡a (mod q)

1,

so that we have

d(n; a) = 1

ϕ(q)

∑
χ (mod q)

χ(a)dχ (n). (4.3)

Then, it suffices to prove that for almost all primes p, d(p − p0; a) > 0 for all a
(mod q) with (a, q) = 1.
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As in [10] we start by observing that if p′, n are coprime with p′ prime, then by
multiplicativity and the Cauchy–Schwarz inequality one has

(
d(np′; a) − dχ0(np

′)
ϕ(q)

)2 ≤ 16
∑

b (mod q)
(b,q)=1

(
d(n; b) − dχ0(n)

ϕ(q)

)2
,

where χ0 is the trivial character modulo q. Denoting by ω(n) the number of distinct
prime factors of n, Halberstam [8] proved that ω(p − p0) has normal order log log p.
Thus, ω(p − p0) ≤ 2 log log p for almost all p ≤ x and so, in particular, p − p0

almost always has a prime factor p′ greater than r(x) := x
1

4 log log x as x → ∞. Also
for almost all such p we have (p′, (p − p0)/p′) = 1 since only o(π(x)) integers ≤ x
have such a large repeated prime factor. Denoting by

∑′ the restriction of the sum to
primes with such properties, we then have

∑′

p−p0≤x

(
d(p − p0; a) − dχ0(p − p0)

ϕ(q)

)2

≤ 16
∑

b (mod q)
(b,q)=1

∑
p−p0=np′≤x,
p,p′ primes,

p′≥r(x), (n,p′)=1

(
d(n; b) − dχ0(n)

ϕ(q)

)2

� max
b (mod q)

(b,q)=1

∑
n≤ x

r(x)

(
d(n; b) − dχ0(n)

ϕ(q)

)2 ∑
p−p0=np′≤x,
p,p′ primes

1,

where all the implicit constants here and below are allowed to depend on q, p0. By [18,
Ch. II Satz 4.2] (cf. Satz 4.6 for the case p0 = 1), with (a1, b1, a2, b2) = (1, 0, n, p0),

the inner sum is O( x
ϕ(n) log2(x/n)

) = O(
x(log log x)2

ϕ(n) log2 x
) since n ≤ x/r(x). Thus, using

also (4.3) the above is

� x(log log x)2

log2 x
max

b (mod q)
(b,q)=1

∑
χ0 �=χ1,χ2 (mod q)

χ1(b)χ2(b)

ϕ(q)2

∑
n≤ x

r(x)

dχ1(n)dχ2(n)

ϕ(n)
.

(4.4)

An easy exercise shows that for �(s) > 1,

∑
n≥1

dχ1(n)dχ2(n)

ϕ(n)ns
= L(1 + s, χ0)L(1 + s, χ1)L(1 + s, χ2)L(1 + s, χ1χ2)R(s)
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where R(s) is an Euler product which is convergent and uniformly bounded on�(s) ≥
− 1

4 . It follows that the inner sum in (4.4) is O(log2 x). Thus we find

∑′

p−p0≤x

(
d(p − p0; a) − dχ0(p − p0)

ϕ(q)

)2 � x(log log x)2

and so we deduce that for ε > 0 we must have

d(p − p0; a) − dχ0(p − p0)

ϕ(q)
�ε (log x)

1
2+ε

for almost all p ≤ x . Finally, for almost all primes p ≤ x we have ω(p − p0) ≥
(1 − ε) log log x and so

dχ0(p − p0) ≥ 2ω(p−p0)−ω(q) �ε (log x)log 2−ε.

Since log 2 > 1/2 we deduce that for almost all primes p ≤ x we have

d(p − p0; a) �ε (log x)log 2−ε,

as desired. ��
Lemma 4.10 Let f ∈ Mk(�0(N ), ξ), and define g by (1.1). Let fn and gn denote
the Fourier coefficients of f and g, respectively, and for any character χ of modulus
q coprime to N, define � f (s, cχ ) and �g(s, cχ ) as in (1.7). Then � f (s, cχ ) and
�g(s, cχ ) continue to entire functions, apart from at most simple poles at s = 1±k

2 ,
and satisfy the functional equation (1.8).

Proof Define

fχ (z) :=
∑

a (mod q)
(a,q)=1

χ(a) f

∣∣∣∣
(
1 a

q
1

)
=

∞∑
n=0

fncχ (n)e(nz), (4.5)

and similarly for gχ . Then

fχ

∣∣∣∣
( −1
Nq2

)
=

∑
u (mod q)

(u,q)=1

χ(u) f

∣∣∣∣
(
1 u

q
1

)( −1
Nq2

)
. (4.6)

Since

q−1
( −1
N

)−1 (1 u
q
1

)( −1
Nq2

)(
1 − v

q
1

)
=

(
q −v

−uN 1+uvN
q

)
∈ �0(N ), (4.7)
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provided that uvN ≡ −1 (mod q), we have

fχ

∣∣∣∣
( −1
Nq2

)
= ξ(q)

∑
u (mod q)

uvN≡−1 (mod q)

χ(u)g

∣∣∣∣
(
1 v

q
1

)

= ξ(q)χ(−N )
∑

u (mod q)
uvN≡−1 (mod q)

χ(v)g

∣∣∣∣
(
1 v

q
1

)
= ξ(q)χ(−N )gχ .

(4.8)

The conclusion now follows by Hecke’s argument [15, Theorem 4.3.5]. ��
Lemma 4.11 Let χ (mod q) be a Dirichlet character induced by the primitive char-
acter χ∗ (mod q∗). Define q0 = ∏

p|q,p�q∗ p and q2 = q
q∗q0 . Then cχ (n) = 0 if q2 � n,

and

cχ (nq2) = q2χ∗(q0)cχ∗(n)cq0(n)

= q2χ∗(q0)τ (χ∗)μ(q0)χ∗(n)μ(gcd(q0, n))ϕ(gcd(q0, n)). (4.9)

Proof By [16, §9.2, Theorem 12], if q∗ | q
gcd(q,n)

then

cχ (n) = χ∗
(

n

gcd(q, n)

)
χ∗

(
q

gcd(q, n)q∗

)
μ

(
q

gcd(q, n)q∗

)
ϕ(q)

ϕ
(

q
gcd(q,n)

)τ(χ∗),

and cχ (n) = 0 otherwise. Since χ∗
(

q
gcd(q,n)q∗

)
= χ∗

(
q0q2

gcd(q,n)

)
= 0 unless q2 | n,

we get cχ (n) = 0 if q∗ �
q

gcd(q,n)
or q2 � n.

For an integer n, we get

cχ (nq2) = χ∗
(

n

gcd(q0, n)

)
χ∗

(
q0

gcd(q0, n)

)
μ

(
q0

gcd(q0, n)

)
ϕ(q)

ϕ
(
q∗ q0

gcd(q0,n)

)τ(χ∗)

= χ∗(n)χ∗(q0)τ (χ∗)μ(q0)
ϕ(q)

ϕ(q∗q0)
μ(gcd(q0, n))ϕ(gcd(q0, n)),

since q0 is squarefree and gcd(q0, q∗) = 1. Finally, since q has the same prime factors
as q∗q0, we have ϕ(q)

ϕ(q∗q0) = q
q∗q0 = q2. ��

Lemma 4.12 Let ξ (mod N ) and χ (mod q) be Dirichlet characters, with (q, N ) =
1. Let { fn}∞n=1 be a sequence of complex numbers of at most polynomial growth, and
define � f (s) and � f (s, cχ ) as in (1.2) and (1.7). Suppose that f1 = 1 and the fn
satisfy the Hecke relations at primes not dividing N, so that

� f (s) = �C(s + k−1
2 )

∑
n|N∞

λnn
−s

∏
p�N

(
1 − λp p

−s + ξ(p)p−2s)−1
, (4.10)
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where λn := fnn− k−1
2 . Let χ∗ (mod q∗) be the primitive character inducing χ , and

define D f,χ (s) = � f (s, cχ )/� f (s, cχ∗). Then D f,χ (s) is a Dirichlet polynomial
given by the following formula:

D f,χ (s) =
∏
p|q∗

λpordp (q/q∗) pordp(q/q∗)(1−s)

×
∏

p|q,p�q∗

p(ordp(q)−1)(1−s)
[
λpordp (q) p1−s + λpordp (q)−2ξ(p)p−s

−λpordp (q)−1

(
χ∗(p) + ξ(p)χ∗(p)p1−2s)], (4.11)

where we define λp
 = 0 for any negative integer 
.
Suppose further that {gn}∞n=1 is a sequence of at most polynomial growth such that

g1 �= 0, gn = g1ξ(n) fn for all n coprime to N, and

�g(s) = g1�C(s + k−1
2 )

∑
n|N∞

λ̃nn
−s

∏
p�N

(
1 − λ̃p p

−s + ξ(p)p−2s)−1
,

where λ̃n = g−1
1 gnn− k−1

2 . Then D f,χ (s)and Dg,χ (s) := �g(s, cχ )/�g(s, cχ∗) satisfy
the functional equation

D f,χ (s) = (q/q∗)1−2sξ(q/q∗)Dg,χ (1 − s). (4.12)

In particular, if� f (s, χ∗) and�g(s, χ∗) satisfy (2.5)with (χ∗, q∗) in place of (χ, q),
then � f (s, cχ ) and �g(s, cχ ) satisfy (1.8).

Proof Let q0 = ∏
p|q,p�q∗ p and q2 = q

q0q∗ . By (4.9), we have

� f (s, cχ )

�C

(
s + k−1

2

) =
∞∑
n=1

λnq2cχ (nq2)

(nq2)s

= q2χ∗(q0)τ (χ∗)μ(q0)
∞∑
n=1

λnq2χ∗(n)μ(gcd(q0, n))ϕ(gcd(q0, n))

(nq2)s

= q2χ∗(q0)τ (χ∗)μ(q0)
∑
n|N∞

λnχ∗(n)

ns
∏
p�qN

∞∑
j=0

λp j χ∗(p j )

p js

×
∏

p|gcd(q2,q∗)

λpordp (q2)

pordp(q2)s
×

∏
p|q0

χ∗(pordp(q)−1)

[
λpordp (q)−1χ∗(pordp(q)−1)

p(ordp(q)−1)s
− ϕ(p) ×

∞∑
j=ordp(q)

λp j χ∗(p j )

p js

]
.
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Thus,

D f,χ (s) = � f (s, cχ )

� f (s, cχ∗)

= q2
∏
p|q∗

λpordp (q/q∗)

pordp(q/q∗)s
∏
p|q0

χ∗(pordp(q))

×
−λ

pordp (q)−1χ∗(pordp (q)−1)

p(ordp (q)−1)s + ϕ(p)
∑∞

j=ordp(q)

λp j χ∗(p j )

p js

(1 − λpχ∗(p)p−s + ξ · χ∗2(p)p−2s)−1
.

For each prime p | q0, we have

−λpordp (q)−1χ∗(pordp(q)−1)

p(ordp(q)−1)s
+ ϕ(p)

∞∑
j=ordp(q)

λp j χ∗(p j )

p js

= −λpordp (q)−1χ∗(pordp(q)−1)

p(ordp(q)−1)s
− ϕ(p)

ordp(q)−1∑
j=0

λp j χ∗(p j )

p js

+ϕ(p)(1 − λpχ∗(p)p−s + ξ · χ∗2(p)p−2s)−1.

Since λp j λp = λp j+1 + ξ(p)λp j−1 , we have

ordp(q)−2∑
j=0

λp j χ∗(p j )

p js
=

[
λpordp (q)−2χ∗(pordp(q)−2)ξ · χ∗2(p)p−s

p(ordp(q)−1)s

−λpordp (q)−1χ∗(pordp(q)−1)

p(ordp(q)−1)s
+ 1

]

×(1 − λpχ∗(p)p−s + ξ · χ∗2(p)p−2s)−1,

so that

−λpordp (q)−1χ∗(pordp(q)−1)

p(ordp(q)−1)s
+ ϕ(p)

∞∑
j=ordp(q)

λp j χ∗(p j )

p js

= −p
λpordp (q)−1χ∗(pordp(q)−1)

p(ordp(q)−1)s

−ϕ(p)

[
λpordp (q)−2χ∗(pordp(q)−2)ξ · χ∗2(p)p−s

p(ordp(q)−1)s
− λpordp (q)−1χ∗(pordp(q)−1)

p(ordp(q)−1)s

]

×(1 − λpχ∗(p)p−s + ξ · χ∗2(p)p−2s)−1.
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Therefore, for each prime p | q0, we have

−λ
pordp (q)−1χ∗(pordp (q)−1)

p(ordp (q)−1)s + ϕ(p)
∑∞

j=ordp(q)

λp j χ∗(p j )

p js

(1 − λpχ∗(p)p−s + ξ · χ∗2(p)p−2s)−1

= χ∗(pordp(q))

p(ordp(q)−1)s

[
λpordp (q) p1−s − λpordp (q)−1χ∗(p) + λpordp (q)−2ξ(p)p−s

−λpordp (q)−1ξ · χ∗(p)p1−2s
]
.

Writing q2 = ∏
p|q∗ pordp(q/q∗) ∏

p|q0 p
ordp(q)−1, this yields

D f,χ (s) =
∏
p|q∗

λpordp (q/q∗) pordp(q/q∗)(1−s)

×
∏

p|q,p�q∗

p(ordp(q)−1)(1−s)
[
λpordp (q) p1−s

−λpordp (q)−1χ∗(p) + λpordp (q)−2ξ(p)p−s − λpordp (q)−1ξ · χ∗(p)p1−2s
]
.

Since λ̃p = ξ(p)λp for p | q0, we also have

(q/q∗)1−2sξ(q/q∗)D f,χ (1 − s)

= q2
∏
p|q∗

ξ(pordp(q/q∗))pordp(q/q∗)(1−2s)
λpordp (q/q∗)

pordp(q/q∗)(1−s)

×
∏

p|q,p�q∗

p−(ordp(q)−1)sξ(pordp(q))χ∗(p)
[
λpordp (q)χ∗(p)p1−s − λpordp (q)−1 p1−2s

+λpordp (q)−2χ∗(p)ξ(p)p−s − λpordp (q)−1ξ · χ∗2(p)
]

= q2
∏
p|q∗

λ̃pordp (q/q∗)

pordp(q/q∗)s
∏

p|q,p�q∗

p−(ordp(q)−1)sχ∗(p)
[
λ̃pordp (q)χ∗(p)p1−s

−λ̃pordp (q)−1ξ(p)χ∗(p)2 p1−2s + λ̃pordp (q)−2χ∗(p)ξ(p)p−s − λ̃pordp (q)−1

]

= Dg,χ̄ (s).

Finally, (1.8) follows from (4.12) and (2.5) (with χ replaced by χ∗) on noting the
equalities cχ∗ = τ(χ∗)χ∗, cχ∗ = τ(χ∗)χ∗ and τ(χ∗)/τ(χ∗) = q−1∗ τ(χ∗)2χ∗(−1). ��
Lemma 4.13 Let {g1, . . . , gh} be a generating set for �1(N ). For i = 1, . . . , h, let
γi ∈ 〈T,W 〉gi 〈T,W 〉 be a matrix with top row ( ri bi ), and choose mi ∈ Z with
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mi | ri−1
N . Then, for any q ∈ N satisfying (q, Nmi ) = 1 and q ≡ Nmibi (mod ri )

for every i , we have Hq ⊇ �1(N ).

Proof Fix a choice of q satisfying the given conditions, and set di = (1− ri )/(Nmi ).
Then

qdi ≡ Nmibidi = (1 − ri )bi ≡ bi (mod ri ).

By hypothesis we have (q, Nmi ) = 1, so we can choose a matrix hi ∈ �0(N ) with

left column
( q
Nmi

)
. The upper-left entry of γi T

qdi−bi
ri hi is q(ri + Nmidi ) = q, and

thus γi T
qdi−bi

ri ∈ Hq . As shown in the proof of Theorem 3.2, Hq also contains T and
W , and thus gi ∈ Hq . ��
Lemma 4.14 For γ = (

a b
Nc d

) ∈ �0(N ), define ht(γ ) = max{|a|, |b|, |c|, |d|}. Let
τ1, . . . , τ
 ∈ {

T, T−1,W,W−1
}
, with τi+1 �= τ−1

i for every i = 1, . . . , 
 − 1. Then,
provided that N ≥ 4,

ht(τ1 . . . τ
) ≥ max{ht(τ1 . . . τ
−1), ht(τ2 . . . τ
)}.

Proof Since ht(γ ) = ht(γ −1) for every γ , it suffices to prove that ht(τ1 . . . τ
) ≥
ht(τ1 . . . τ
−1). Suppose that this is false, and let τ1, . . . , τ
 be a counterexample of
minimal length. Since ht(T±1) = ht(W±1) = ht(I ), we must have 
 > 1.

Note that 〈T,W 〉 has some outer automorphisms that preserve the height function.
Specifically, conjugating an element γ = τ1 . . . τ
 by

(
1 −1

)
leaves ht(γ ) unchanged

and swaps every occurrence of T with T−1 and W with W−1. Similarly, conjugating
by

( −1
N

)
swaps T with W−1 and W with T−1. Thus, applying an appropriate outer

automorphism, we may assume without loss of generality that τ
 = T .
Write τ1 . . . τ
−1 = (

a b
Nc d

)
. Then by assumption we have h := ht(

(
a b
Nc d

)
) >

ht(
(

a b
Nc d

)
T ), so that h = max{|a|, |b|, |c|, |d|} > max{|a|, |a + b|, |c|, |Nc + d|}.

Hence, h = max{|b|, |d|}. If h = |b| then |a| < |b| and |a + b| < |b|, so ab < 0. If
h = |d| then |Nc + d| < |d|, so cd < 0 and |Nc| < 2|d|.

Next we consider τ
−1, which must be one of T,W,W−1, since τ
 �= τ−1

−1. By

minimality, we have ht(
(

a b
Nc d

)
τ−1

−1) = ht(τ1 . . . τ
−2) ≤ h. If τ
−1 = T then we

have max{|b − a|, |d − Nc|) ≤ h, contradicting the fact that ab < 0 when h = |b|
and cd < 0 when h = |d|. If τ
−1 = W then we have max{|a − Nb|, |c − d|} ≤ h,
which is again a contradiction.

Hence we may assume that τ
−1 = W−1, and we have max{|a + Nb|, |b|, |c +
d|, |d|} ≤ h. If h = |b| then |b| ≥ |a + Nb| > (N − 1)|b|, which is a contradiction,
since N > 1. Hence we must have h = |d|.

Next, let j ∈ {1, . . . , 
 − 1} be the largest number such that τ
−i = W−1 for
i = 1, . . . , j . Since |Nc| < 2|d| and N > 1, we must have j < 
 − 1. Consider
τ
− j−1, which must be one of T, T−1. We have

ht
((

a b
Nc d

)
W jτ−1


− j−1

)
= ht(τ1 . . . τ
− j−2) ≤ h.
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Since τ
− j−1 = T±1 and j N ≥ 4, this implies that

|d| ≥ ht
((

a b
Nc d

)
W jT∓1

)
≥ |( j N ∓ 1)d + Nc| > ( j N ∓ 1 − 2)|d| ≥ |d|,

which is a contradiction. ��
For N ≥ 4, �1(N ) is torsionfree [13, Lemma 12.3], and hence free by the Kurosh

subgroup theorem [14]. Lemma 4.14 permits a simple, direct proof of the following
consequence:

Corollary 4.15 T and W generate a free group if and only if N ≥ 4.

Proof For N ≤ 3, we verify directly that (W−1T )12 = I . For N ≥ 4, suppose that
τ1 . . . τ
 = I is a non-trivial relation of minimal length satisfied by T and W . Clearly

 > 1, and by applying an appropriate outer automorphism, we may assume that τ1 =
T . Considering each possible τ2 ∈ {T,W,W−1}, we see that ht(τ1τ2) > 1 = ht(I ),
in contradiction to Lemma 4.14. ��
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