109 research outputs found
Contribution of non-extensor muscles of the leg to maximal-effort countermovement jumping
BACKGROUND: The purpose of this study was to determine the effects of non-extensor muscles of the leg (i.e., muscles whose primary function is not leg extension) on the kinematics and kinetics of human maximal-effort countermovement jumping. Although it is difficult to address this type of question through experimental procedures, the methodology of computer simulation can be a powerful tool. METHODS: A skeletal model that has nine rigid body segments and twenty degrees of freedom was developed. Two sets of muscle models were attached to this skeletal model: all (most of) major muscles in the leg ("All Muscles" model) and major extensor muscles in the leg (i.e., muscles whose primary function is leg extension; "Extensors Only" model). Neural activation input signal was represented by a series of step functions with a step duration of 0.05 s. Simulations were started from an identical upright standing posture. The optimal pattern of the activation input signal was searched through extensive random-search numerical optimization with a goal of maximizing the height reached by the mass centre of the body after jumping up. RESULTS: The simulated kinematics was almost two-dimensional, suggesting the validity of two-dimensional analyses when evaluating net mechanical outputs around the joints using inverse dynamics. A greater jumping height was obtained for the "All Muscles" model (0.386 m) than for the "Extensors Only" model (0.301 m). For the "All Muscles" model, flexor muscles developed force in the beginning of the countermovement. For the "All Muscles" model, the sum of the work outputs from non-extensor muscles was 47.0 J, which was 13% of the total amount (359.9 J). The quantitative distribution of the work outputs from individual muscles was markedly different between these two models. CONCLUSION: It was suggested that the contribution of non-extensor muscles in maximal-effort countermovement jumping is substantial. The use of a computer simulation model that includes non-extensor muscles seems to be more desirable for the assessment of muscular outputs during jumping
Effect of plyometric training on handspring vault performance and functional power in youth female gymnasts
This study aimed to determine the effect of plyometric training (PT) when added to habitual gymnastic training (HT) on handspring vault (HV) performance variables. Twenty youth female competitive gymnasts (Age: 12.5 ± 1.67 y) volunteered to participate and were randomly assigned to two independent groups. The experimental plyometric training group (PTG) undertook a six-week plyometric program, involving two additional 45 min PT sessions a week, alongside their HT, while the control group (CG) performed regular HT only. Videography was used (120 Hz) in the sagittal plane to record both groups performing three HVs for both the baseline and post-intervention trials. Furthermore, participants completed a countermovement jump test (CMJ) to assess the effect of PT on functional power. Through the use of Quintic biomechanics software, significant improvements (P < 0.05) were found for the PTG for run-up velocity, take-off velocity, hurdle to board distance, board contact time, table contact time and post-flight time and CMJ height. However, there were no significant improvements on pre-flight time, shoulder angle or hip angle on the vault for the PTG. The CG demonstrated no improvement for all HV measures. A sport-specific PT intervention improved handspring vault performance measures and functional power when added to the habitual training of youth female gymnasts. The additional two hours plyometric training seemingly improved the power generating capacity of movement-specific musculature, which consequently improved aspects of vaulting performance. Future research is required to examine the whether the improvements are as a consequence of the additional volume of sprinting and jumping activities, as a result of the specific PT method or a combination of these factors
Quantitative Mass Spectrometry Evaluation of Human Retinol Binding Protein 4 and Related Variants
Background: Retinol Binding Protein 4 (RBP4) is an exciting new biomarker for the determination of insulin resistance and type 2 diabetes. It is known that circulating RBP4 resides in multiple variants which may provide enhanced clinical utility, but conventional immunoassay methods are blind to such differences. A Mass Spectrometric immunoassay (MSIA) technology that can quantitate total RBP4 as well as individual isoforms may provide an enhanced analysis for this biomarker. Methods: RBP4 was isolated and detected from 0.5 uL of human plasma using MSIA technology, for the simultaneous quantification and differentiation of endogenous human RBP4 and its variants. Results: The linear range of the assay was 7.81–500 ug/mL, and the limit of detection and limit of quantification were 3.36 ug/mL and 6.52 ug/mL, respectively. The intra-assay CVs were determined to be 5.1 % and the inter-assay CVs were 9.6%. The percent recovery of the RBP4-MSIA ranged from 95 – 105%. Method comparison of the RBP4 MSIA vs the Immun Diagnostik ELISA yielded a Passing & Bablok fit of MSIA = 1.056 ELISA – 3.09, while the Cusum linearity p-value was.0.1 and the mean bias determined by the Altman Bland test was 1.2%. Conclusion: The novel RBP4 MSIA provided a fast, accurate and precise quantitative protein measurement as compared to the standard commercially available ELISA. Moreover, this method also allowed for the detection of RBP4 variants that are present in each sample, which may in the future provide a new dimension in the clinical utility of this biomarker
Variable, but not free-weight, resistance back squat exercise potentiates jump performance following a comprehensive task-specific warm-up
Studies examining acute, high-speed movement performance enhancement following intense muscular contractions (frequently called "post-activation potentiation"; PAP) often impose a limited warm-up, compromizing external validity. In the present study, the effects on countermovement vertical jump (CMJ) performance of back squat exercises performed with or without elastic bands during warm-up were compared. After familiarization, fifteen active men visited the laboratory on two occasions under randomized, counterbalanced experimental squat warm-up conditions: (a) free-weight resistance (FWR) and (b) variable resistance (VR). After completing a comprehensive task-specific warm-up, three maximal CMJs were performed followed by three back squat repetitions completed at 85% of 1-RM using either FWR or VR Three CMJs were then performed 30 seconds, 4 minutes, 8 minutes, and 12 minutes later. During CMJ trials, hip, knee, and ankle joint kinematics, ground reaction force data and vastus medialis, vastus lateralis, and gluteus maximus electromyograms (EMG) were recorded simultaneously using 3D motion analysis, force platform, and EMG techniques, respectively. No change in any variable occurred after FWR (P > 0.05). Significant increases (P < 0.05) were detected at all time points following VR in CMJ height (5.3%-6.5%), peak power (4.4%-5.9%), rate of force development (12.9%-19.1%), peak concentric knee angular velocity (3.1%-4.1%), and mean concentric vastus lateralis EMG activity (27.5%-33.4%). The lack of effect of the free-weight conditioning contractions suggests that the comprehensive task-specific warm-up routine mitigated any further performance augmentation. However, the improved CMJ performance following the use of elastic bands is indicative that specific alterations in force-time properties of warm-up exercises may further improve performance
- …