21 research outputs found

    Evolutionary tree reconstruction

    Get PDF
    It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed

    Playbook Data Analysis Tool: Collecting Interaction Data from Extremely Remote Users

    Get PDF
    Typically, user tests for software tools are conducted in person. At NASA, the users may be located at the bottom of the ocean in a pressurized habitat, above the atmosphere in the International Space Station, or in an isolated capsule on a simulated asteroid mission. The Playbook Data Analysis Tool (P-DAT) is a human-computer interaction (HCI) evaluation tool that the NASA Ames HCI Group has developed to record user interactions with Playbook, the group's existing planning-and-execution software application. Once the remotely collected user interaction data makes its way back to Earth, researchers can use P-DAT for in-depth analysis. Since a critical component of the Playbook project is to understand how to develop more intuitive software tools for astronauts to plan in space, P-DAT helps guide us in the development of additional easy-to-use features for Playbook, informing the design of future crew autonomy tools.P-DAT has demonstrated the capability of discreetly capturing usability data in amanner that is transparent to Playbooks end-users. In our experience, P-DAT data hasalready shown its utility, revealing potential usability patterns, helping diagnose softwarebugs, and identifying metrics and events that are pertinent to Playbook usage aswell as spaceflight operations. As we continue to develop this analysis tool, P-DATmay yet provide a method for long-duration, unobtrusive human performance collectionand evaluation for mission controllers back on Earth and researchers investigatingthe effects and mitigations related to future human spaceflight performance

    Software for Planning Scientific Activities on Mars

    Get PDF
    Mixed-Initiative Activity Plan Generator (MAPGEN) is a ground-based computer program for planning and scheduling the scientific activities of instrumented exploratory robotic vehicles, within the limitations of available resources onboard the vehicle. MAPGEN is a combination of two prior software systems: (1) an activity-planning program, APGEN, developed at NASA s Jet Propulsion Laboratory and (2) the Europa planner/scheduler from NASA Ames Research Center. MAPGEN performs all of the following functions: Automatic generation of plans and schedules for scientific and engineering activities; Testing of hypotheses (or what-if analyses of various scenarios); Editing of plans; Computation and analysis of resources; and Enforcement and maintenance of constraints, including resolution of temporal and resource conflicts among planned activities. MAPGEN can be used in either of two modes: one in which the planner/scheduler is turned off and only the basic APGEN functionality is utilized, or one in which both component programs are used to obtain the full planning, scheduling, and constraint-maintenance functionality

    The High Resolution Imaging Science Experiment (HiRISE) during MRO鈥檚 Primary Science Phase (PSP)

    Full text link

    Trade and Technology

    No full text
    last-name

    Where the REALLY Hard Problems Are

    No full text
    It is well known that for many NP-complete problems, such as K-Sat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NP-complete problems can be summarized by at least one "order parameter", and that the hard problems occur at a critical value of such a parameter. This critical value separates two regions of characteristically different properties. For example, for K-colorability, the critical value separates overconstrained from underconstrained random graphs, and it marks the value at which the probability of a solution changes abruptly from near 0 to near 1. It is the high density of well-separated almost solutions (local minima) at this boundary that cause search algorithms to "thrash". This boundary is a type of phase transition and we show that it is preserved under mappings between problems. We show that for some P problems either there is no phase transition or it occurs for bounded N (and so bound..

    Designing for Astronaut-Centric Planning and Scheduling Aids

    No full text
    We have investigated and evaluated a novel concept of operations for human spaceflight: allowing astronauts to manage and schedule their own timeline. In order to evaluate this self-scheduling concept of operations, we have designed, implemented, and field-tested astronaut-centric planning and scheduling aid. Our mobile-based software aid, Playbook, has been used in a variety of Earth analogs as well as onboard the International Space Station. We will demonstrate the unique Playbook features that we have developed based on research findings during field testing that facilitate planning and scheduling in extreme environments
    corecore