51 research outputs found
The Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory is a second generation water Cherenkov
detector designed to determine whether the currently observed solar neutrino
deficit is a result of neutrino oscillations. The detector is unique in its use
of D2O as a detection medium, permitting it to make a solar model-independent
test of the neutrino oscillation hypothesis by comparison of the charged- and
neutral-current interaction rates. In this paper the physical properties,
construction, and preliminary operation of the Sudbury Neutrino Observatory are
described. Data and predicted operating parameters are provided whenever
possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and
epsf style files. For additional information about SNO see
http://www.sno.phy.queensu.ca . This version has some new reference
Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses
To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely
Carbonate drifts as marine archives of aeolian dust (Santaren Channel, Bahamas)
Sediment data from the Bahamian Santaren carbonate drift reveal the variability of trans-Atlantic Saharan dust transport back to about 100 ka BP (Marine Isotope Stage 5-3) and demonstrate that carbonate drifts are a valuable pelagic archive of aeolian dust flux. Carbonate drift bodies are common around tropical carbonate platforms; they represent large-scale accumulations of ocean-current transported material, which originates from the adjacent shallow-water carbonate factory as well as from pelagic production, i.e. periplatform ooze. Subordinately, there is a clay-size to silt-size non-carbonate fraction, which typically amounts to less than 10% of the sediment volume and originates from aeolian and fluvial input. Sedimentation rates in the 5.42 m long core GeoHH-M95-524 recovered 25 km west of Great Bahama Bank in the Santaren Channel ranges from 1-5 to 24.5 cm ka-1 with lowest values during the last glacial lowstand and highest values following platform re-flooding around 8 ka BP. These sedimentation rates imply that carbonate drifts have not only the potential to resolve long-term environmental changes on orbital timescales, but also millennial to centennial fluctuations during interglacials. The sediment core has been investigated with the aim of characterizing the lithogenic dust fraction. Laboratory analyses included X-ray fluorescence core scanning, determination of carbonate content and grain-size analyses (of bulk and terrigenous fraction), as well as visual inspections of the lithogenic residue; the age model is based on oxygen isotopes and radiocarbon ages. Data show that the input of aeolian dust in the periplatform ooze as indicated by Ti/Al and Fe/Al element ratios abruptly increases at 57 ka BP, stays elevated during glacial times, and reaches a Holocene minimum around 6.5 ka BP, contemporary to the African Humid Period. Subsequently, there is a gradual increase in dust flux which almost reaches glacial levels during the last centuries. Grain-size data show that the majority of dust particles fall into the fine silt range (below 10 µm); however, there is a pronounced coarse dust fraction in the size range up to 63 µm and individual ‘giant’ dust particles are up to 515 µm in size. Total dust flux and the relative amounts of fine and coarse dust are decoupled. The time-variable composition of the grain-size spectrum is interpreted to reflect different dust transport mechanisms: fine dust particles are delivered by the trade winds and the geostrophic winds of the Saharan Air Layer, whereas coarse dust particles travel with convective storm systems. This mode of transport ensures continuous re-suspension of large particles and results in a prolonged transport. In this context, grain-size data from the terrigenous fraction of carbonate drifts provide a measure for past coarse dust transport, and consequently for the frequency of convective storm systems over the dust source areas and the tropical Atlantic
Evaluation of medetomidine-ketamine and medetomidine-ketamine-butorphanol for the field anesthesia of free-ranging dromedary camels (Camelus dromedarius) in Australia
We report the clinical course and physiologic and anesthetic data for a case series of 76 free-ranging dromedary camels (Camelus dromedarius) chemically restrained, by remote injection from a helicopter, in the rangelands of Western Australia and South Australia, 2008–11, to attach satellite-tracking collars. Fifty-five camels were successfully anesthetized using medetomidine-ketamine (MK, n = 27) and medetomidine-ketamine-butorphanol (MKB, n = 28); the induction of anesthesia in 21 animals was considered unsuccessful. To produce reliable anesthesia for MK, medetomidine was administered at 0.22 mg/kg (±SD = 0.05) and ketamine at 2.54 mg/kg (±0.56), and for MKB, medetomidine was administered at 0.12 mg/kg (±0.05), ketamine at 2.3 mg/kg (±0.39), and butorphanol at 0.05 mg/kg (±0.02). Median time-to-recumbency for MKB (8.5 min) was 2.5 min shorter than for MK (11 min) (P = 0.13). For MK, the reversal atipamezole was administered at 0.24 mg/kg (±0.10), and for MKB, atipamezole was administered at 0.23 mg/kg (±0.13) and naltrexone at 0.17 mg/kg (±0.16). Median time-to-recovery was 1 min shorter for MK (5 min) than MKB (6 min; P = 0.02). Physiologic parameters during recumbency were not clinically different between the two regimes. Both regimes were suitable to safely anesthetize free-ranging camels; however, further investigation is required to find the safest, most consistent, and logistically practical combination
Long-term radiological and histological outcomes following selective internal radiation therapy to liver metastases from breast cancer
Contains fulltext :
200234.pdf (publisher's version ) (Open Access)Liver metastasis from breast cancer is associated with poor prognosis and is a major cause of early morbidity and mortality. When liver resection is not feasible, minimally invasive directed therapies are considered to attempt to prolong survival. Selective internal radiation therapy (SIRT) with yttrium-90 microspheres is a liver-directed therapy that can improve local control of liver metastases from colorectal cancer. We present a case of a patient with a ductal breast adenocarcinoma, who developed liver and bone metastasis despite extensive treatment with systemic chemotherapies. Following SIRT to the liver, after an initial response, the patient ultimately progressed in the liver after 7 months. Liver tumor histology obtained 20 months after the SIRT intervention demonstrated the presence of the resin microspheres in situ. This case report demonstrates the long-term control that may be achieved with SIRT to treat liver metastases from breast cancer that is refractory to previous chemotherapies, and the presence of microspheres in situ long-term
- …