1,428 research outputs found

    Non-local fluctuation correlations in active gels

    Get PDF
    Many active materials and biological systems are driven far from equilibrium by embedded agents that spontaneously generate forces and distort the surrounding material. Probing and characterizing these athermal fluctuations is essential for understanding the properties and behaviors of such systems. Here we present a mathematical procedure to estimate the local action of force-generating agents from the observed fluctuating displacement fields. The active agents are modeled as oriented force dipoles or isotropic compression foci, and the matrix on which they act is assumed to be either a compressible elastic continuum or a coupled network-solvent system. Correlations at a single point and between points separated by an arbitrary distance are obtained, giving a total of three independent fluctuation modes that can be tested with microrheology experiments. Since oriented dipoles and isotropic compression foci give different contributions to these fluctuation modes, ratiometric analysis allows us characterize the force generators. We also predict and experimentally find a high-frequency ballistic regime, arising from individual force generating events in the form of the slow build-up of stress followed by rapid but finite decay. Finally, we provide a quantitative statistical model to estimate the mean filament tension from these athermal fluctuations, which leads to stiffening of active networks.Comment: 12 pages, 7 figures; some clarifications and ammended figure notation

    How dsDNA breathing enhances its flexibility and instability on short length scales

    Full text link
    We study the unexpected high flexibility of short dsDNA which recently has been reported by a number of experiments. Via the Langevin dynamics simulation of our Breathing DNA model, first we observe the formation of bubbles within the duplex and also forks at the ends, with the size distributions independent of the contour length. We find that these local denaturations at a physiological temperature, despite their rare and transient presence, can lower the persistence length drastically for a short DNA segment in agreement with experiment

    Path integrals for stiff polymers applied to membrane physics

    Full text link
    Path integrals similar to those describing stiff polymers arise in the Helfrich model for membranes. We show how these types of path integrals can be evaluated and apply our results to study the thermodynamics of a minority stripe phase in a bulk membrane. The fluctuation induced contribution to the line tension between the stripe and the bulk phase is computed, as well as the effective interaction between the two phases in the tensionless case where the two phases have differing bending rigidities.Comment: 11 pages RevTex, 4 figure

    Some observations on the renormalization of membrane rigidity by long-range interactions

    Full text link
    We consider the renormalization of the bending and Gaussian rigidity of model membranes induced by long-range interactions between the components making up the membrane. In particular we analyze the effect of a finite membrane thickness on the renormalization of the bending and Gaussian rigidity by long-range interactions. Particular attention is paid to the case where the interactions are of a van der Waals type.Comment: 11 pages RexTex, no figure

    Soft swimming: Exploiting deformable interfaces for low-Reynolds number locomotion

    Full text link
    Reciprocal movement cannot be used for locomotion at low-Reynolds number in an infinite fluid or near a rigid surface. Here we show that this limitation is relaxed for a body performing reciprocal motions near a deformable interface. Using physical arguments and scaling relationships, we show that the nonlinearities arising from reciprocal flow-induced interfacial deformation rectify the periodic motion of the swimmer, leading to locomotion. Such a strategy can be used to move toward, away from, and parallel to any deformable interface as long as the length scales involved are smaller than intrinsic scales, which we identify. A macro-scale experiment of flapping motion near a free surface illustrates this new result

    Surface Polymer Network Model and Effective Membrane Curvature Elasticity

    Full text link
    A microscopic model of a surface polymer network - membrane system is introduced, with contact polymer surface interactions that can be either repulsive or attractive and sliplinks of functionality four randomly distributed over the supporting membrane surface anchoring the polymers to it. For the supporting surface perturbed from a planar configuration and a small relative number of surface sliplinks, we investigate an expansion of the free energy in terms of the local curvatures of the surface and the surface density of sliplinks, obtained through the application of the Balian - Bloch - Duplantier multiple surface scattering method. As a result, the dependence of the curvature elastic modulus, the Gaussian modulus as well as of the spontaneous curvature of the "dressed" membrane, ~{\sl i.e.} polymer network plus membrane matrix, is obtained on the mean polymer bulk end to end separation and the surface density of sliplinks.Comment: 15 pages with one included compressed uuencoded figure

    Force generation in small ensembles of Brownian motors

    Full text link
    The motility of certain gram-negative bacteria is mediated by retraction of type IV pili surface filaments, which are essential for infectivity. The retraction is powered by a strong molecular motor protein, PilT, producing very high forces that can exceed 150 pN. The molecular details of the motor mechanism are still largely unknown, while other features have been identified, such as the ring-shaped protein structure of the PilT motor. The surprisingly high forces generated by the PilT system motivate a model investigation of the generation of large forces in molecular motors. We propose a simple model, involving a small ensemble of motor subunits interacting through the deformations on a circular backbone with finite stiffness. The model describes the motor subunits in terms of diffusing particles in an asymmetric, time-dependent binding potential (flashing ratchet potential), roughly corresponding to the ATP hydrolysis cycle. We compute force-velocity relations in a subset of the parameter space and explore how the maximum force (stall force) is determined by stiffness, binding strength, ensemble size, and degree of asymmetry. We identify two qualitatively different regimes of operation depending on the relation between ensemble size and asymmetry. In the transition between these two regimes, the stall force depends nonlinearly on the number of motor subunits. Compared to its constituents without interactions, we find higher efficiency and qualitatively different force-velocity relations. The model captures several of the qualitative features obtained in experiments on pilus retraction forces, such as roughly constant velocity at low applied forces and insensitivity in the stall force to changes in the ATP concentration.Comment: RevTex 9 pages, 4 figures. Revised version, new subsections in Sec. III, removed typo

    The thermal Casimir effect in lipid bilayer tubules

    Full text link
    We calculate the thermal Casimir effect for a dielectric tube of radius RR and thickness delta formed from a membrane in water. The method uses a field-theoretic approach in the grand canonical ensemble. The leading contribution to the Casimir free energy behaves as -k_BTL kappa_C/R giving rise to an attractive force which tends to contract the tube. We find that kappa_C ~ 0.3 for the case of typical lipid membrane t-tubules. We conclude that except in the case of a very soft membrane this force is insufficient to stabilize such tubes against the bending stress which tends to increase the radius.Comment: 4 pages no figures RevTe

    Minimal Bending Energies of Bilayer Polyhedra

    Get PDF
    Motivated by recent experiments on bilayer polyhedra composed of amphiphilic molecules, we study the elastic bending energies of bilayer vesicles forming polyhedral shapes. Allowing for segregation of excess amphiphiles along the ridges of polyhedra, we find that bilayer polyhedra can indeed have lower bending energies than spherical bilayer vesicles. However, our analysis also implies that, contrary to what has been suggested on the basis of experiments, the snub dodecahedron, rather than the icosahedron, generally represents the energetically favorable shape of bilayer polyhedra

    Spicules and the effect of rigid rods on enclosing membrane tubes

    Full text link
    Membrane tubes (spicules) arise in cells, or artificial membranes, in the nonlinear deformation regime due to, e.g. the growth of microtubules, actin filaments or sickle hemoglobin fibers towards a membrane. We calculate the axial force exerted by the cylindrical membrane tube, and its average radius, by taking into account steric interactions between the fluctuating membrane and the enclosed rod. The force required to confine a fluctuating membrane near the surface of the enclosed rod diverges as the separation approaches zero. This results in a smooth crossover of the axial force between a square root and a linear dependence on the membrane tension as the tension increases and the tube radius shrinks. This crossover can occur at the most physiologically relevant membrane tensions. Our work may be important in (i) interpreting experiments in which axial force is related to the tube radius or membrane tension (ii) dynamical theories for biopolymer growth in narrow tubes where these fluctuation effects control the tube radius.Comment: 10 pages, 1 figur
    corecore