25 research outputs found

    Differential Responses of Calcifying and Non-Calcifying Epibionts of a Brown Macroalga to Present-Day and Future Upwelling pCO2

    Get PDF
    Seaweeds are key species of the Baltic Sea benthic ecosystems. They are the substratum of numerous fouling epibionts like bryozoans and tubeworms. Several of these epibionts bear calcified structures and could be impacted by the high pCO2 events of the late summer upwellings in the Baltic nearshores. Those events are expected to increase in strength and duration with global change and ocean acidification. If calcifying epibionts are impacted by transient acidification as driven by upwelling events, their increasing prevalence could cause a shift of the fouling communities toward fleshy species. The aim of the present study was to test the sensitivity of selected seaweed macrofoulers to transient elevation of pCO2 in their natural microenvironment, i.e. the boundary layer covering the thallus surface of brown seaweeds. Fragments of the macroalga Fucus serratus bearing an epibiotic community composed of the calcifiers Spirorbis spirorbis (Annelida) and Electra pilosa (Bryozoa) and the non-calcifier Alcyonidium hirsutum (Bryozoa) were maintained for 30 days under three pCO2 conditions: natural 460±59 ”atm, present-day upwelling1193±166 ”atm and future upwelling 3150±446 ”atm. Only the highest pCO2 caused a significant reduction of growth rates and settlement of S. spirorbis individuals. Additionally, S. spirorbis settled juveniles exhibited enhanced calcification of 40% during daylight hours compared to dark hours, possibly reflecting a day-night alternation of an acidification-modulating effect by algal photosynthesis as opposed to an acidification-enhancing effect of algal respiration. E. pilosa colonies showed significantly increased growth rates at intermediate pCO2 (1193 ”atm) but no response to higher pCO2. No effect of acidification on A. hirsutum colonies growth rates was observed. The results suggest a remarkable resistance of the algal macro-epibionts to levels of acidification occurring at present day upwellings in the Baltic. Only extreme future upwelling conditions impacted the tubeworm S. spirorbis, but not the bryozoans

    Trilobodrilus itoi sp nov., with a Re-Description of T. nipponicus (Annelida: Dinophilidae) and a MolecularPhylogeny of the Genus

    Get PDF
    The marine interstitial annelid Trilobodrilus itoi sp. nov., the sixth member of the genus, is described on the basis of specimens collected intertidally at Ishikari Beach, Hokkaido, Japan; this is the second species in the genus described from the Pacific Rim. In addition, T. nipponicus Uchida and Okuda, 1943 is re-described based on fresh topotypic material from Akkeshi, Hokkaido, Japan. From both species, we determined sequences of the nuclear 18S and 28S rRNA genes, and the mitochondrial cytochrome c oxidase subunit I (COI) gene. Molecular phylogenetic trees based on concatenated sequences of the three genes showed that T. itoi and T. nipponicus form a clade, which was the sister group to a clade containing the two European congeners T. axi Westheide, 1967 and T. heideri Remane, 1925. The Kimura two-parameter distance for COI was 22.5-22.7% between T. itoi and T. nipponicus, comparable with interspecific values in other polychaete genera. We assessed the taxonomic utility of epidermal inclusions and found that the known six species can be classified into three groups
    corecore