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Trilobodrilus itoi sp. nov., with a Re-Description of T. nipponicus 
(Annelida: Dinophilidae) and a Molecular

Phylogeny of the Genus

Hiroshi Kajihara1*, Maho Ikoma1, Hiroshi Yamasaki2, and Shimpei F. Hiruta1

1Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
2Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara,

Nakagami, Okinawa 903-0213, Japan

The marine interstitial annelid Trilobodrilus itoi sp. nov., the sixth member of the genus, is described 
on the basis of specimens collected intertidally at Ishikari Beach, Hokkaido, Japan; this is the sec-
ond species in the genus described from the Pacific Rim. In addition, T. nipponicus Uchida and 
Okuda, 1943 is re-described based on fresh topotypic material from Akkeshi, Hokkaido, Japan. 
From both species, we determined sequences of the nuclear 18S and 28S rRNA genes, and the 
mitochondrial cytochrome c oxidase subunit I (COI) gene. Molecular phylogenetic trees based on 
concatenated sequences of the three genes showed that T. itoi and T. nipponicus form a clade, 
which was the sister group to a clade containing the two European congeners T. axi Westheide, 
1967 and T. heideri Remane, 1925. The Kimura two-parameter distance for COI was 22.5–22.7% 
between T. itoi and T. nipponicus, comparable with interspecific values in other polychaete genera. 
We assessed the taxonomic utility of epidermal inclusions and found that the known six species 
can be classified into three groups.
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INTRODUCTION

The dinophilid annelid genus Trilobodrilus Remane, 
1925 comprises marine interstitial ‘archiannelids’ that reach 
approximately 2 mm in body length and lack typical poly-
chaete features such as distinct body segmentation, parapo-
dia, and chitinous chaetae. It currently contains five named 
species: T. heideri Remane, 1925 and T. axi Westheide, 
1967 in European waters (e.g., Remane, 1925; Boaden, 1963; 
Westheide, 1967; Ax, 1968; Scharnofske, 1986); T. indicus
Chandrasekhara Rao, 1973 from India (Chandrasekhara Rao, 
1973); T. nipponicus Uchida and Okuda, 1943 from Japan 
(Uchida and Okuda, 1943), India (Chandrasekhara Rao and 
Ganapati, 1968), and the Pacific coast of the USA (Wieser, 
1957); and T. hermaphroditus Riser, 1999 from the Atlantic 
coast of the USA (Riser, 1999). The hypothesis that these 
and other dinophilids have evolved from an ancestor most 
closely related to dorvilleid polychaetes in Eunicida (e.g., 
Westheide, 1987; Eibye-Jacobsen and Kristensen, 1994) was 
not supported by molecular phylogenetic analyses (Struck et 
al., 2002, 2005), and the sister taxon to Dinophilidae has not 
clearly been established (e.g., Rousset et al., 2007; Struck 
et al., 2008; Zrzavý et al., 2009). The family as currently 
diagnosed (Westheide, 1984) contains 16 species in three 
genera (Read, 2014). Dinophilids and other interstitial anne-

lid families, such as Diurodrilidae (Worsaae and Rouse, 
2008; Golombek et al., 2013), Nerillidae (Worsaae et al., 
2005), Protodrilidae (Bailey-Brock et al., 2010; Di Domenico 
et al., 2013; Martínez et al., 2013, 2014), and Saccocirridae 
(Di Domenico et al., 2014a, b, c) are important for under-
standing annelid evolution overall (Worsaae and Kristensen, 
2005; Struck, 2006; Westheide, 2008) and the biogeography 
(Curini-Galletti et al., 2012) and macroevolutionary patterns 
(Rundell and Leander, 2010) of microscopic animals.

The Pacific species Trilobodrilus nipponicus needs re-
description, as some of the morphological characters con-
sidered to be useful in distinguishing among congeners, 
e.g., the shape of ‘epidermal inclusions’ (see below), were 
not known for this species, nor were DNA sequence data 
available. Westheide (1967) pointed out that T. nipponicus
is morphologically superficially similar to the European spe-
cies T. heideri, and that a more detailed taxonomic descrip-
tion of the former is necessary to differentiate between 
them. While T. nipponicus has been reported from several 
localities distant from the type locality subsequent to the 
original description, insufficient original descriptions and lack 
of DNA data call into question previous species identifica-
tions of Trilobodrilus specimens worldwide (e.g., Rieger and 
Rieger, 1975).

Under light microscopy, specimens of Trilobodrilus show 
within the epidermis two types of small bodies up to 15 μm 
long: (1) a mosaic or aggregation of droplets, and (2) an 
elongated, darker body with granular contents. The terminol-
ogy for these small bodies has been inconsistent in the 
literature. Westheide (1967) originally used the term 
“Epidermiseinschlüsse” [epidermis inclusions] collectively to 
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refer to both types, but called the aggregations of droplets 
“polygonale Felder” [polygonal fields] and the other, granular 
type “spindelförmige Drüsen” [spindle-shaped glands]. 
Chandrasekhara Rao (1973) did not use a collective term to 
refer to the two types, but called the former type “epidermal 
glands” and the latter “bacillary glands”. Riser (1999) like-
wise did not use a collective term, but called the former type 
“epidermal inclusions” and the latter “spindle glands”. 
Westheide (1967), who initially discovered epidermal inclu-
sions in Trilobodrilus, noted differences in the inclusions 
between T. axi and T. heideri, which suggested the small 
bodies might provide useful taxonomic characters. Although 
the ‘epidermis inclusions’ sensu Westheide (1967) have 
been succinctly described in T. indicus (Chandrasekhara 
Rao, 1973) and T. hermaphroditus (Riser, 1999), their struc-
ture has not been explored in detail, nor has their taxonomic 
significance been rigorously assessed with statistical tests.

While Yamanishi (1983) listed 16 species of marine 
interstitial annelids reported from Japanese waters, repre-
senting 11 genera, these tiny worms remain understudied in 
this region. During the course of a faunal survey of marine 
interstitial animals around Hokkaido, northern Japan, we 
recognized two species of Trilobodrilus, one of which was 
referable to T. nipponicus, whereas the other turned out to 
be new to science. In this paper, we describe and illustrate 
these two species, and report the results of molecular phy-
logenetic analyses to infer their systematic position, making 
use of dinophilid sequences available in public databases. 
We also report intra- and interspecific variation in epidermis 
inclusions of the mosaic type (the “polygonale Felder” of 
Westheide [1967]), which we henceforth refer to as ‘epider-
mal inclusions’ sensu Riser (1999), and discuss the taxo-
nomic utility of variation in these structures.

MATERIALS AND METHODS

Sampling and observation
Sampling was conducted at two localities, Ishikari Beach and 

Akkeshi Bay, Hokkaido, northern Japan (Fig. 1). Specimens were 
extracted from intertidal sediment samples by freshwater shock fol-
lowed by stirring and decantation: sediments were brought back to 
the laboratory and agitated briefly but intensively in tap water in a 
bucket; the suspension was passed through a Gwen’s mermaid bra 
(Nybakken and Higgins, 2007) with a 32-μm-mesh net; and the res-
idue was immediately transferred to seawater to avoid rupture of the 
soft-bodied animals. Living worms were collected with a Pasteur 
pipette under a dissecting microscope and photographed with a 
Nikon D5200 digital camera attached to a Nikon SMZ 1500 micro-
scope by adapters (NYPIXS2-3166, NY1S-FA, and NY1S-1501750, 
Micronet), with a pair of external strobe lights (Hikaru Komachi Di, 
Morris, Japan). For light microscopy, specimens were observed 
under an Olympus BX51 compound microscope after being anaes-
thetized in a MgCl2 solution isotonic to seawater and photographed 
with the same digital camera. For scanning electron microscopy 
(SEM), specimens were anaesthetized as just described and then 
fixed in formalin–seawater, dehydrated in an ethanol series, dried in 
a Hitachi HCP-2 CO2 critical-point drier, mounted on an aluminium 
stub, coated with gold in a JEOL JFC-1100 ion sputter coater, and 
observed with a Hitachi S-3000N scanning electron microscope at 
15-kV accelerating voltage. Measurements were taken from scaled 
digital images using ImageJ ver. 1.48 (Rasband, 1997–2014). Type 
and voucher material has been deposited in the Hokkaido Univer-
sity Museum (ZIHU), Sapporo, Japan.

Analyses of epidermal inclusions
Terminology and standard measurements pertaining to the 

mosaic-type epidermal inclusions treated here are given in Fig. 2. 
Each epidermal inclusion consists of an ‘envelope’ containing a 
number of ‘spherules’. The envelope is embedded in the epidermis, 
but may connect with the exterior via a small opening. The spherule 
situated closest to the opening is usually (but not always) the larg-
est; we call the largest spherule the ‘major spherule’, corresponding 
to the “cap-like unit” of Riser (1999). Within the envelope there may 
be a ‘vacuolar region’ that lacks spherules, usually at the end oppo-
site the major spherule. Because the envelope is so thin and the 
spherules are packed so tightly within it, the envelope itself cannot 
be observed by light microscopy; its outline distinct from the spher-
ules is evident only in the vacuolar region. In the drawings of 
Westheide (1967, fig. 5) and Chandrasekhara Rao (1973, figs. 5–
6), the envelope is not illustrated at all; in the photographs of 
Westheide (1967, fig. 6) and Riser (1999, fig. 1), the outline of the 
envelope is unclear. In this paper, to compare the measurements 
from T. itoi and T. nipponicus with those from other species, the 
length of the epidermal inclusion is defined as the long axis of the 
aggregation of spherules, rather than of the envelope itself, and the 

Fig. 1. Map of Hokkaido, northern Japan, showing the sampling 
sites and the surrounding ocean currents.

Fig. 2. Schematic drawing of an epidermal inclusion, defining 
length and width, and the terminology for the components.
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width of the epidermal inclusion as the short axis of the spherule 
aggregation (Fig. 2).

To assess intraspecific variation in epidermal inclusions, the 
length and width of 11–26 epidermal inclusions were measured for 
each of five specimens of T. itoi sp. nov. Measurements were made 
from digital images, and differences in the variance and mean of the 
length-to-width ratio among the five specimens where examined by 
Bartlett’s test and Tukey’s HSD test, respectively. Interspecific vari-
ation in the epidermal inclusions was assessed in the same man-
ner. For previously described species, lengths and widths were 
measured from figures in the published literature: Westheide (1967, 
figs. 5, 6) for T. axi (n = 13) and T. heideri (n = 15), Chandrasekhara 
Rao (1973, fig. 4) for T. indicus (n = 2), and Riser (1999, fig. 1) for 
T. hermaphroditus (n = 15). For T. nipponicus, 21 epidermal inclu-
sions were measured from one specimen. Statistical tests were per-
formed with R ver. 3.1.0 (R Core Team, 2014).

DNA extraction, PCR amplification, and sequencing
Total DNA was extracted by using a DNeasy Tissue Kit (Qiagen, 

USA). Fragments of the nuclear 18S and 28S rRNA genes (18S 
and 28S, respectively), and the mitochondrial cytochrome c oxidase 
subunit I gene (COI), were amplified by polymerase chain reaction 
(PCR) with the primer pairs listed in Table 1. PCR conditions were 
95°C for 1 min; 35 cycles of 95°C for 30 sec, 45°C for 90 sec, and 
72°C for 3 min (90 sec for COI); and 72°C for 7 min. Sequences 
were determined with the primers listed in Table 1 by using a Big-
Dye Terminator Kit ver. 3.1 (Life Technologies, USA) and a 3730 
DNA analyzer (Life Technologies, USA).

For the new species, we also obtained longer sequences by 
next-generation sequencing (NGS). DNA concentration was mea-
sured with a NanoDrop 8000 Spectrophotometer (Thermo Fisher 
Scientific, USA). DNA (100 ng) was fragmented using an Ion 
Xpress™ Plus Fragment gDNA Library Kit (Ion Torrent, USA). Frag-
ments were ligated to barcode adapters using an Ion Xpress™ 
Barcode Adapters 33–48 Kit (Ion Torrent, USA). Using 2% E-Gel®

SizeSelect™ Agarose Gels (Invitrogen, USA), the resultant barcode 
library was subjected to size selection, targeting fragments 480 nt 
long. After eight cycles of PCR amplification, the size-selected 
library was purified twice with AMPureXP (Beckman Coulter, USA), 
and the quantity of the library was determined with a High Sensitiv-
ity DNA Kit (Agilent Technologies, USA). Based on this library, 
emulsion-PCR-based beads were prepared by using an Ion PGM™ 
Template OT2 400 Kit (Ion Torrent, USA). Sequencing was carried 
out with an Ion Torrent PGM™ sequencer, using an Ion 314™ Chip 
ver. 2 (Ion Torrent, USA)/Ion PGM™ Sequencing 400 Kit (Ion 
Torrent, USA). Base calling was done with an Ion Torrent Server, 
with the output for each barcode in the form of binary sequence 
alignment/map (BAM)-format files. The adapter sequences in the 
BAM files were eliminated by using CLC Genomic Workbench ver. 
7 (CLC Bio, USA); in addition, de novo assembly was performed 
with CLC Genomic Workbench ver. 7, yielding 3155 contigs; these 
were exported in FASTA format and subjected to similarity searches 
using BLAST+ ver. 2.2.29.

Molecular phylogenetic analyses
To infer phylogenetic relationships among species in Trilobodrilus, 

a maximum-likelihood (ML) analysis and Bayesian inference (BI) 
were carried out that included sequences from our two species and 
four species of dinophilids for which sequences were available in 
the public databases (Table 2). Because the sister taxon to 
Dinophilidae is uncertain (e.g., Rousset et al., 2007), outgroups 
were chosen to include taxa in seven polychaete families, with spe-
cial emphasis on Dorvilleidae (cf. Eibye-Jacobsen and Kristensen, 
1994). The sipunculan Sipunculus nudus Linnaeus, 1766 was used 
to root the trees (Kvist and Siddall, 2013; Weigert et al., 2014). 
Sequences were aligned gene by gene by using MUSCLE (Edgar, 
2004) implemented in MEGA ver. 5.2 (Tamura et al., 2011) with the 
following settings: Gap Open = −400; Gap Extend = 0; Max Itera-
tions = 8; Clustering Method (Iteration 1, 2) = neighbor joining; Clus-
tering Method (Other Iterations) = neighbor joining; Min Diag Lengt 

Table 1. List of primers used for amplification and sequencing, with original references.

Gene Primer name Reaction* Primer sequence (in 5′–3′ direction) Direction Source

18S rRNA

K18SF A/S GTCATATGCTTGTCTTAAAGATTAAGC Forward Present study
K18SR A/S GGAAACCTTGTTACGACTTTTACTTCA Reverse Present study
F2 S CCTGAGAAACGGCTRCCACAT Forward Yamaguchi and Endo (2003)
F3 S GYGRTCAGATACCRCCSTAGTT Forward Yamaguchi and Endo (2003)
F4 S GGTCTGTGATGCCCTYAGATGT Forward Yamaguchi and Endo (2003)
R6 S TYTCTCRKGCTBCCTCTCC Reverse Yamaguchi and Endo (2003)
R7 S GYYARAACTAGGGCGGTATCTG Reverse Yamaguchi and Endo (2003)
R8 S ACATCTRAGGGCATCACAGACC Reverse Yamaguchi and Endo (2003)

28S rRNA

D1F A/S GGGACTACCCCCTGAATTTAAGCAT Forward Park and Ó Foighil (2000)
28Sb A/S TCGGAAGGAACCAGCTAC Reverse Whiting et al. (1997)
28S-01 A/S GACTACCCCCTGAATTTAAGCAT Forward Kim et al. (2000)
28Sr A/S ACACACTCCTTAGCGGA Reverse Luan et al. (2005)
28Sf A/S TGGGACCCGAAAGATGGTG Forward Luan et al. (2005)
28S-3KR A/S CCAATCCTTTTCCCGAAGTT Reverse Yamasaki et al. (2013)
28S-2KF A/S TTGGAATCCGCTAAGGAGTG Forward Yamasaki et al. (2013)
28jj-3′ A/S AGTAGGGTAAAACTAACCT Reverse Palumbi (1996)
28S-n05R S CTCACGGTACTTGTTCGCTAT Reverse Yamasaki et al. (2013)
28SR-01 S GACTCCTTGGTCCGTGTTTCAAG Reverse Kim et al. (2000)
28S-15R S CGATTAGTCTTTCGCCCCTA Reverse Yamasaki et al. (2013)
28S-3KF S AGGTGAACAGCCTCTAGTCG Forward Yamasaki et al. (2013)
28v-5′ S AAGGTAGCCAAATGCCTCATC Forward Palumbi (1996)
28S-42F S GAGTTTGACTGGGGCGGTA Forward Yamasaki et al. (2013)

COI
LCO1490 A/S GGTCAACAAATCATAAAGATATTGG Forward Folmer et al. (1994)
HCO2198 A/S TAAACTTCAGGGTGACCAAAAAATCA Reverse Folmer et al. (1994)

*A, PCR amplification; S, cycle sequencing
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(lambda) = 24. Alignment-ambiguous regions were removed by 
using BMGE v. 1.1 (Criscuolo and Gribaldo, 2010); the 18S and 
28S alignments were processed with the “-t DNA” option, and COI 
with the “-t CODON” option. The lengths of the resulting sequence 
alignments were 1535 nt (18S), 1735 nt (28S), and 645 nt (COI); 
the genes were concatenated for phylogenetic analyses by using 
MEGA ver. 5.2.

The ML analysis was conducted in RAxML ver. 8 (Stamatakis, 
2014) under the GTR+G model; for 18S and 28S, the data were 
partitioned by gene; for COI by codon position. Nodal support val-
ues were estimated by bootstrapping with 1000 pseudoreplicates. 
RAxML was called as follows (except the options for input and out-
put file names, as well as the partition file name): raxmlHPC-
PTHREADS-AVX -T 5 -f a -x12345 -p 12345 -#1000 -m GTR-
GAMMA.

Bayesian inference was conducted by using MrBayes ver. 3.2.3 
(Ronquist and Huelsenbeck, 2003; Altekar et al., 2004), with two 
independent Metropolis-coupled analyses, each using four Markov 
chains of 1,000,000 generations. Trees were sampled every 100 
generations. Run convergence was assessed by using Tracer ver. 
1.6 (Rambaut et al., 2014). For BI, jModeltest2 (Darriba et al., 2012) 
was used to determine the most suitable substitution model for each 
gene partition under the Bayesian information criterion, with the fol-
lowing settings: number of substitution schemes = 3; including mod-
els with equal/unequal base frequencies (+F); including models 
with/without a proportion of invariable sites (+I); including models 
with/without rate variation among sites (+G) (nCat = 4); optimized 
free parameters (K) = substitution parameters + 29 branch 
lengths + topology; base tree for likelihood calculations = ML tree; 
tree topology search operation = NNI. The optimal models were 
K80+I+G for 18S, GTR+G for 28S, and GTR+I+G for COI.

Kimura (1980) two-parameter (K2P) genetic distances were 
calculated by using MEGA ver. 5.2.

RESULTS

Taxonomy
Trilobodrilus itoi sp. nov.

(Fig. 3)

Material examined. Syntypes, ZIHU 4885, 17 speci-
mens, Au-coated and mounted on SEM stub, collected by 
M. Ikoma and H. Kajihara, 15 January 2012, Ishikari Beach 
(43°15′26″N, 141°21′26″E; type locality), about 2 km south-
southwest from the mouth of the Ishikari River, Hokkaido, 
northern Japan; from surface layer of sediment (medium 
sand) to about 10 cm depth at water’s edge. Eleven speci-
mens, same locality as for syntypes, collected by M. I., 30 
September 2013, observed alive by light microscopy, 
destroyed after observation except for two non-type speci-
mens: ZIHU 4886 (fixed in 10% formalin–seawater, mounted 
in glycerine on a glass slide, with the edge of the coverslip 
sealed with Canada balsam) and ZIHU 4887 (fixed in Bouin’s 
fluid, mounted in the same manner as ZIHU 4886). More 
than 50 specimens collected sporadically at the type locality 
from 29 October 2012 to 30 September 2013, all destroyed 
after observation by light microscopy and DNA extraction.

Sequences. The following sequences were determined 
by standard sequencing from a single, non-type specimen 
collected on 17 December 2012, for which no morphological 
voucher remains: COI, AB924371 (658 nt, coding 219 aa); 
18S rRNA, AB924372 (1714 nt); 28S rRNA, AB924373 
(1120 nt). In addition, 75,340 reads (equivalent to 18.6 M 
bases) by new-generation sequencing from eight specimens 

Table 2. List of species included in the phylogenetic analysis, with public database accession numbers.

Taxa
Markers

Sources
18S 28S COI

Ingroup (Dinophilidae)
Dinophilus gyrociliatus Schmidt, 1857 AF412805 — — Struck et al. (2002)
Dinophilus sp. FJ200245 FJ200246 — Worsaae and Rouse (2008)
Trilobodrilus axi Westheide, 1967 AF412806 AY894292 — Struck et al. (2002, 2005)
Trilobodrilus heideri Remane, 1925 AF412807 AY732231 — Struck et al. (2002, 2005)
Trilobodrilus itoi sp. nov. DRA001682 DRA001682 AB924371 Present study
Trilobodrilus nipponicus Uchida and Okuda, 1943 LC009446 LC009447 LC009445 Present study

Outgroup (Dorvilleidae)
Dorvillea erucaeformis (Malmgren, 1865) AY176285 AY838859 AY838868 Worsaae et al. (2005); Struck et al. (2006)
Exallopus jumarsi Blake, 1985 — — JQ310755 Wiklund et al. (unpubl.)
Iphitime hartmanae Kirkegaard, 1977 — — GQ415472 Wiklund et al. (2009)
Microdorvillea sp. AY527051 — — Struck (unpubl.)
Ophryotrocha labronica La Greca and Bacci, 1962 AY838855 DQ790047 AY838874 Struck et al. (2006, 2007)
Parougia eliasoni (Oug, 1978) — DQ790053 GQ415489 Struck et al. (2007); Wiklund et al. (2009)
Pettiboneia urciensis Campoy and San Martin, 1980 AF412801 — — Struck et al. (2002)
Protodorvillea kefersteini (McIntosh, 1869) AF412799 AY732230 KF808171 Struck et al. (2002, 2005); Aylagas et al. (2014)
Schistomeringos longicornis (Ehlers, 1901) — HM473268 HM473662 Carr (unpubl.)

Outgroup (others)
Cirratulus spectabilis (Kinberg, 1866) AY708536 DQ790029 — Burnette et al. (2005); Struck et al. (2007)
Diurodrilus subterraneus Remane, 1934 KC790349 KC790349 KC790350 Golombeck et al. (2013)
Eunice sp. AF412791 AY732229 — Struck et al. (2002, 2005)
Eurythoe complanata (Pallas, 1766) AY364851 AY364849 JN086548 Jördens et al. (2004); Borda et al. (2012)
Nereis vexillosa Grube, 1851 DQ790083 DQ790043 HM473512 Struck et al. (2007); Carr et al. (2011)
Pectinaria gouldii (Verrill, 1873) DQ790091 DQ790054 FJ976040 Struck et al. (2007); Zhong et al. (unpubl.)
Sipunculus nudus Linnaeus, 1766 DQ300006 DQ300048 DQ300162 Schulze et al. (2007)
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in all, collected on 30 September 2013, have been depos-
ited in the DDBJ Sequence Read Archive under accession 
number DRA001682. The complete 18S sequence with 

parts of the ETS and ITS regions (3463 nt), as well as partial 
28S sequences including part of the ITS region (4620 nt), 
both assembled from DRA001682, are available as Supple-

Fig. 3. Trilobodrilus itoi sp. nov. (A, F, G, J) Living, non-type specimens, destroyed by compression during observation; (B–E, H) SEM 
images, syntype, ZIHU 4885. (A) Anaesthetized whole specimen, photographed under dissecting microscope. (B) Head, front-lateral view. (C)
Head, dorso-lateral view; dotted circle indicates wide gap in third ciliary band. (D) Head, lateral view. (E) Whole body, ventral view. (F) Photo-
micrograph of epidermal inclusions. (G) Magnification of epidermal inclusion. (H) Whole body, lateral view. (J) Photomicrograph of whole body.
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mentary Files S1 and S2, respectively.
Diagnosis. Trilobodrilus with second ciliary band incom-

plete dorsally, where single mid-dorsal ciliary tuft is present; 
third ciliary band dorsally discontinuous, with large gap.

Description. Body 0.9–1.3 mm long, 0.08–0.12 mm 
wide (n = 11); colorless, translucent; stomach light yellow; 
salivary glands opaque white, sometimes tinged with green 
(Fig. 3A); oocytes cream white. Head with four apical ciliary 
tufts on anterior end, arranged dorsally and ventrally on both 
sides (Fig. 3B), as in congeners. Three ciliary bands present 
anteriorly (Fig. 3B–D); first band completely encircling head 
near tip (Fig. 3B, C); second band situated just anterior to 
mouth, dorsally discontinuous (Fig. 3C); third band post-oral 
on segment 1, dorsally discontinuous, with wide gap (Fig. 
3C). Single, long, mid-dorsal ciliary tuft in gapped portion of 
second band, oriented slightly anteriorly (Fig. 3B, C). Pair of 
nuchal organs in segment 1, one on each side, just anterior 
to third ciliary band (Fig. 3D). Small, short ciliary tufts distrib-
uted sporadically on sides of body (Fig. 3E, H). In anaesthe-
tized and fixed conditions, apparently 6–7 segments (except 
pygidium), although segmental boundaries posterior to seg-
ment 2 obscure; pygidium with unclear boundary (Fig. 3A, E, 
H). Pair of salivary glands (Fig. 3A, J) between segments 2 
and 3. Width of central ciliary tract (Fig. 3E) about 40% (35–
44%, n = 4) of body diameter in middle of body. Epidermal 
inclusions highly variable in shape, mostly elliptical, up to 
7 × 12 μm in size (Fig. 3F, G); spherules 3–22 (mostly 7–8) 
in number (n = 86, five specimens) (see below “Epidermal 
inclusions”). Spindle glands not found (Fig. 3F). No mature 
male found. Females contained up to two oocytes, each up 
to 150 μm in diameter, arranged in tandem beneath intestine 
(Fig. 3J); “storage cells” or “coelenchyme” of Fransen (1980, 
fig. 4A), up to 30 μm in diameter, packed within coelom in 
mature females (Fig. 3J). Mature individuals with oocytes 
found in September and October.

Remarks. Trilobodrilus itoi differs from congeners, 
except for T. nipponicus, in having a mid-dorsal ciliary tuft 
in the gapped portion of the second ciliary band on the head 
(Table 3). Trilobodrilus itoi differs from T. nipponicus in hav-
ing the third ciliary band (on the first body segment) discon-
tinuous dorsally (vs continuous in T. nipponicus), and the 
ventral ciliary tract is narrow, about 40% of body width (vs 
wide, about 45% in T. nipponicus).

Ecology. At Ishikari Beach, T. itoi appeared to be nar-
rowly restricted to the swash zone; none were found land-

ward in subsurface water. Densities were locally variable; in 
calm sea conditions, up to 20 individuals were collected per 
300 ml of sand. The salinity during the sampling period was 
generally 30; the water temperature was 12°C on 29 October 
2012 and 4°C on 17 December 2012. Itô (1985) found the 
sediment grain size at the site (ϕ scale; Krumbein, 1937) to be 
1.2–1.7. Animals that co-occurred in the habitat included pro-
seriate flatworms (one of which was Archotoplana yamadai
Tajika, 1983); harpacticoid copepods (Arenopontia ishikariana
Itô, 1968 and Leptastacus japonicus Itô, 1968); nematodes 
(genera Axonolaimus, Bathylaimus, Enoploides, Enoplolaimus, 
Epacanthion, Epsilonema, Mesacanthion, Metoncholaimus, 
Neochromadora, Oncholaimus, Parasaveljevia, Rhynchonema, 
Theristus, and Trissonchulus) (D. Shimada, pers. comm.); 
the non-interstitial gammarid amphipod Anisogammarus 
pugettensis (Dana, 1853) (cf. Hoshide, 1971); and the 
mysid Archaeomysis articulata Hanamura, 1997 (cf. 
Hanamura, 1999). With sporadic water changes, individuals 
of T. itoi were able to survive for more than a month without 
feeding in a Petri dish placed in an incubator at 12°C.

Etymology. The specific name, a noun in the genitive 
case, is in honor of Dr Tatsunori Itô (1945–1990), a Japanese 
meiobenthologist and crustacean systematist, whose hand-
book for the general public, Organisms in Sand Interstices
(Itô, 1985), influenced several successive generations in 
Japan. Ishikari Beach, the type locality, was one of Itô’s pri-
mary research sites early in his career (e.g., Itô, 1970).

Trilobodrilus nipponicus Uchida and Okuda, 1943
(Fig. 4)

Trilobodrilus nipponicus Uchida and Okuda, 1943, p. 301, 
figs. 1, 2.

?Trilobodrilus nipponicus: Wieser (1957), p. 284, fig. 4; 
Chandrasekhara Rao and Ganapati (1968), p. 28, fig. 5.

Material examined. ZIHU 4946, 22 specimens, Au-
coated and mounted on three SEM stubs, collected on a 
narrow beach about 50 m long at the base of a steep cliff 
near Cape Aikappu, Akkeshi, Hokkaido (43°00′58″N, 
144°50′02″E) by M. Ikoma, S. F. Hiruta, and H. Kajihara, 23 
September 2014. In addition, one specimen examined alive 
with light microscopy was destroyed after observation, and 
four other specimens were used for DNA extraction.

Sequences. The following sequences were determined 

Table 3. Morphological characters and their states in the six species in Trilobodrilus.

Species
Body
length
(mm)

Body
width
(mm)

Number of
mid-dorsal
tuft on 2nd
ciliary band

3rd ciliary
band dorsally

continuous
(+) or not (−)

Size of
epidermal
inclusions

(μm)

Number of
spherules per

envelope

Mean ratio of
length to width
of epidermal

inclusions

Spindle
glands

present (+)
or absent (−)

Stomach
color

Sex Habitat Source

T. axi Westheide, 1967 1 0.1 0 −a 10 × 15 5–10 1.81 + ? dioecious intertidal Westheide (1967)

T. heideri Remane, 1925 1.5–1.9  0.1–0.2 0 − ? 3–10 1.41 + brown dioecious subtidal
Remane (1925);

Westheide (1967)

T. hermaphroditus 
Riser, 1999

~1.7 ~0.22 2 +b 6 × 9 3–7 1.42 +
greenish
brown

hermaphroditic
intertidal/
subtidal

Riser (1999)

T. indicus Chandrasekhara 
Rao, 1973

1.0–1.2  0.1–0.12 0 + 12 7–11 2.42 + transparent? dioecious intertidal
Chandrasekhara

Rao (1973)

T. itoi sp. nov. 0.9–1.3 0.08–0.12 1 − 7 × 9 3–22 1.45 − yellowish dioecious intertidal Present study

T. nipponicus Uchida 
and Okuda, 1943

0.7–1.4 0.09–0.16 1 + 5.5 × 16 9–13 2.28 −
pale green
or yellowish

brown
dioecious intertidal

Uchida and
Okuda (1943);
present study

aComprised of three rows, the 3rd row present only on ventral side; bhorse-shoe shaped, not meeting ventral ciliary tract
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by standard sequencing from four specimens, for which no 
morphological vouchers remain: COI, LC009442–LC009445 
(658 nt, coding 219 aa); 18S rRNA, LC009446 (from one 
specimen, 1784 nt); 28S rRNA, LC009447 (from one speci-
men, 3596 nt).

Diagnosis. Trilobodrilus with second ciliary band dor-
sally incomplete, with single mid-dorsal tuft of cilia; third cil-
iary band nearly complete dorsally.

Description. Body 0.7–1.4 mm long, 0.09–0.16 mm 
wide (n = 23); colorless, translucent (Fig. 4A); stomach 
orange yellow; oocytes opaque white. Ciliary pattern same 
as for T. itoi, except: 1) third ciliary band continuous dorsally 
(n = 14), although sometimes sparse (n = 7) (Fig. 4B), and 
2) width of ventral ciliary tract about 52% (46–55%, n = 4) 

of body width (Fig. 4D). Epidermal inclusions elongate, 11–
16 μm long, 3.5–5.5 μm wide, with 9–13 spherules per enve-
lope (Fig. 4F); size ratio of major spherule to other spherules 
in each envelope appearing to be greater than that in T. itoi
(Figs. 3G, 4F). Spindle glands not found.

Remarks. Our topotypic material agrees completely 
with the original description of T. nipponicus, except that lat-
eral ciliary tufts were sparse in our material (Fig. 4C, E), 
rather than regularly arranged on each segment as 
described and illustrated by Uchida and Okuda (1943, fig. 
1). Trilobodrilus nipponicus has been distinguished morpho-
logically from congeners in having a single, mid-dorsal cili-
ary tuft on the head. Chandrasekhara Rao and Ganapati 
(1968) identified specimens from India as T. nipponicus

Fig. 4. Trilobodrilus nipponicus Uchida and Okuda, 1943. (A) ZIHU 4946, photographed alive under dissecting microscope before prepara-
tion for SEM. (B–E) ZIHU 4946, SEM images. (B) Head, dorsal view; dotted circle indicates dorsally continuous third ciliary band. (C) Lateral 
view of whole body; arrowheads indicate lateral ciliary tufts. (D) Ventral view of whole body. (E) Middle portion of body, ventrolateral view; 
arrowheads showing lateral ciliary tufts. (F) Photomicrograph of epidermal inclusions.
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because they had this type of mid-dorsal tuft. Because T. itoi
also has a mid-dorsal tuft, the Indian form can no longer be 
positively identified as T. nipponicus. Rieger and Rieger 
(1975) also depicted a mid-dorsal tuft in an unidentified form 
collected from subtidal sand off Beaufort, North Carolina, 
Atlantic coast, USA; its identity should be investigated in 
future studies. A form from the Pacific coast near Seattle, 
USA, identified by Wieser (1957) as T. nipponicus lacks a 
mid-dorsal tuft; because the second ciliary band is continu-
ous dorsally (Wieser, 1957, fig. 4), this form probably repre-
sents a different species.

Ecology. Although sediment-particle sizes were not 
measured, the sediment on the beach at Akkeshi appeared 
to be coarser than that at Ishikari Beach. Trilobodrilus 
nipponicus was extremely patchily distributed. We collected 
sediment at ~20 randomly chosen points along the beach in 
a zone a few meters landward or seaward from the water’s 
edge, but detected T. nipponicus in only one sediment 
sample. We found 29 specimens in a 300 ml of sediment 
sample, in which unidentified acoels, harpacticoids, and 
nematodes predominated; fragments of cirratulid branchial 
filaments were also found. Uchida and Okuda (1943) 
reported that “the Archiannelid, Saccocirrus major, the 
Rhabdocoelid Turbellarian, Thylacorhynchus sp. and some 
nemerteans” co-occurred with T. nipponicus. While we did 
observe saccocirrids, they did not appear to utilize the same 
microhabitat as T. nipponicus. An unidentified species of 
Proschizorhynchella (Kalyptorhynchia: Schizorhynchia) co-
occurred at low frequency (K. Tamura pers. comm.). Nem-
erteans in the genus Cephalothrix were found at the beach, 
but no species in Ototyphlonemertes, an interstitial ribbon-
worm genus often found intertidally. We examined sediment 
on the northern and western coasts of Akkeshi Bay, and on 
two other beaches on the eastern coast (south of the type 
locality), but did not find Trilobodrilus. Sediments were grav-
elly on the northern coast, silty on the western coast, and 
composed of finer sand on the two southeastern beaches.

Epidermal inclusions
Spherules could be observed by light-microscopy when 

the animal was slightly squashed under a cover slip, but 
forceful squashing was necessary to count the number of 
spherules in a single envelope. After forceful squashing, 
however, the spherule(s) partly or entirely exuded from the 
envelope, especially near the edge of the body (Fig. 5). We 

eventually gave up counting the exact number of spherules 
in each envelope, because 1) smaller spherules below 0.2 
μm in diameter (i.e., approaching the limit of the optical res-
olution for a 100 × oil-immersion lens) occurred between 
larger spherules, and 2) the spherules were not arranged at 
the same focal depth, with the deeper portion obscured.

The mean value in the ratio of length to width of the epi-
dermal inclusions among the five specimens of T. itoi ranged 
from 1.35 to 1.55 (Fig. 6A), with no significant differences 
among the five in variation (P = 0.13: Bartlett’s test) or mean 

Fig. 5. Trilobodrilus itoi sp. nov., photomicrograph of epidermal 
inclusions near edge of body; arrowheads indicate major spherules 
appearing to be squeezed out of epidermis.

Fig. 6. Standard box-and-whisker plots of the length–width ratio of 
epidermal inclusions; the box encompasses the first and third 
quartiles; the thick horizontal bar within the box depicts the median; 
and whiskers depict the true minimum and maximum values, except 
where outliers (circles) greater than 1.5 times the interquartile range 
were identified. (A) Intraspecific variation in Trilobodrilus itoi sp. nov. 
among five specimens (specimen No. 1 was a mature, but tiny, 
female 0.9 mm in body length; Nos. 2–5 were immature specimens, 
1.1–1.3 mm in body length). (B) Interspecific variation among six 
congeners; means with the same lower-case letter at the top of the 
graph are not significantly different based on Tukey’s HSD test (α = 
0.05). Data from the literature: T. axi and T. heideri, Westheide 
(1967); T. indicus, Chandrasekhara Rao (1973); T. hermaphroditus, 
Riser (1999).
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(P = 0.30–0.99: Tukey’s HSD test).
Significant differences in variation were observed 

among the six species of Trilobodrilus when two outliers 
(one each in T. heideri and T. nipponicus) were included 
(P = 0.0038: Bartlett’s test). Excluding these outliers 
resulted in no significance (P = 0.014, α = 0.01); the greater 
P value was likely due to the small sample size in T. indicus
(n = 2). Excluding the outliers, three groups of mean length–
width ratio values were evident: i) T. axi (1.81); ii) T. heideri
(1.41), T. hermaphroditus (1.42), and T. itoi (1.45); and iii) 
T. indicus (2.42) and T. nipponicus (2.28) (Fig. 6B).

Phylogeny and genetic distance
In the best ML tree (lnL = −23774.622593) (Fig. 7) and 

BI tree (Supplementary Fig. S1), Dinophilidae is monophyl-
etic, with 97% bootsrtap frequency (BF) and 1.00 posterior 
probability (PP). Within Dinophilidae, T. itoi and T. nipponicus
form a clade (97% BF, 1.00 PP), as do the two European 
species, T. axi and T. heideri (96% BF, 1.00 PP). These two 
clades together comprise a monophyletic group (67% BF, 
0.98 PP). Dinophilus sp. sensu Worsaae and Rouse (2008) 
is the sister group to Trilobodrilus spp. (97% BF, 1.00 PP), 
and Dinophilus gyrociliatus Schmidt, 1857, is the sister 
group to all other species in Dinophilidae (97% BF, 1.00 
PP). Our results thus refute the suggestion (Westheide, 
1967) that, based on morphological similarity, T. heideri
might be more closely related to T. nipponicus than to T. axi.

Our study corroborated that of Struck et al. (2002, 2005) 
in failing to support the morphology-based hypothesis 
(Eibye-Jacobsen and Kristensen, 1994) of a close relation-
ship between Dinophilidae and Dorvilleidae. All the dorville-
ids included in our analyses (except for Pettiboneia urciensis
Campoy and San Martin, 1980) formed a clade (91% BF, 
1.00 PP) that was the sister group to Eunice sp. (64% BF, 
0.99 PP).

The interspecific K2P genetic distance for COI based on 
one specimen of T. itoi and four of T. nipponicus was 22.5–
22.7%. These values are comparable with interspecific K2P 
distances for COI in other genera of interstitial polychaetes, 
e.g., 23.6–27.0% among six species in Protodrilus (Di 
Domenico et al., 2013; Martínes et al., 2013), and in genera 
of non-interstitial annelids, e.g., an average of 26.2% in 
Hydroides (Sun et al., 2012) and 19.2–26.2% among three 
species of Glycera (Schüller, 2011).

DISCUSSION

We discovered two species of Trilobodrilus along the 
shores of Hokkaido Island, one at Ishikari Beach on the west 
coast, and the other in Akkeshi Bay on the east, with the two 
localities 1050 km (northward course) and 1230 km (south-
ward course) apart in along-shore distances (Fig. 1). While 
we did not record precise physical/geological data for the 
habitat such as granulometry, the two beaches do differ in 
physical properties. In beach morphodynamics (Wright and 

Short, 1984), Ishikari Beach is the 
intermediate to dissipative type, 
with finer sand, while the beach in 
Akkeshi Bay is more or less reflec-
tive, with coarser sand. Our sam-
pling site on Ishikari Beach, which 
is a stretch of sandy shore 25 km 
long, is 2 km from a river mouth, 
while the small, unnamed beach in 
Akkeshi Bay, roughly 50 m long, 
appeared to receive a continuous 
input of organic detritus from the 
nearby rocky and particulate 
shores that are rich in macroalgae 
and sea grasses. In addition to dif-
ferences in the physical properties 
between the two beaches, they are 
under the influence of different 
ocean currents: the warm Tsushima 
Current flowing north off Ishikari 
Beach on the Sea of Japan, and 
the cold Oyashio Current flowing 
south outside Akkeshi Bay on the 
Pacific Ocean (Fig. 1).

Overall, the distribution of the 
two species appeared to be quite 
restricted, differing widely in scales 
ranging from microhabitat to the 
geographical and oceanographic 
levels. In this context, the putative 
wide distribution of T. nipponicus
across the Indo–Pacific (Wieser, 
1957; Chandrasekhara Rao and 
Ganapati, 1968) is likely the result 

Fig. 7. Phylogenetic tree resulting from maximum-likelihood analysis based on combined COI, 
18S, and 28S rRNA gene sequences (lnL = −23774.622593). Numbers near nodes indicate 
maximum-likelihood bootstrap support values in percent (> 60%) and posterior probability from 
Bayesian inference (> 0.90), respectively.
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of misidentification (see Remarks above), as opponents of 
the “everything is everywhere” hypothesis (for review, De 
Wit and Bouvier, 2006; Fontaneto and Brodie, 2011; Williams, 
2011) have put forward (e.g., Coleman, 2002; Foissner, 
2006; Taylor et al., 2006). The species in Trilobodrilus so far 
investigated are all direct developers lacking a planktonic 
larval phase (Uchida and Okuda, 1943; Ax, 1968), which 
suggests relatively low dispersal ability, which in turn may 
be related to the restricted distributions observed in this 
study. The phylogeographic pattern in our phylogeny, in 
which the two Japanese species comprise the sister group 
to a clade containing the two European forms, may also be 
related to the poor dispersal potential in Trilobodrilus.

Species in Trilobodrilus were thought to be morphologi-
cally similar, distinguished by “the number of body seg-
ments, structure of head and pygidium, distribution of ciliary 
rings, lateral tufts of cilia, tactile bristles, structure of epider-
mal glands [sic], etc.” (Chandrasekhara Rao, 1973), until the 
fourth congener (T. indicus) was described. While the fifth 
species (T. hermaphroditus) differs from all of its congeners 
in being hermaphroditic, Riser (1999) pointed out that the 
body segmentation can vary during specimen preparation 
(pressure under the cover slip, anaesthetization, and fixa-
tion), and other characters, such as the four anterior tactile 
bristles (ciliary tufts) on the tip of the head, are present in all 
congeners and thus have little value in distinguishing 
between species. With regard to the epidermal inclusions, 
our observations indicated that 1) counting the number of 
spherules per envelope is impractical because there can be 
a number of extremely small (< 0.2 μm) spherules at differ-
ent focus depths, but 2) the mean length–width ratio (L/W) 
may be of taxonomic utility, with three groups of species 
having been detected: T. indicus and T. nipponicus (elongate 
type, L/W > 2.0); T. axi (medium type, 1.5 ≤ L/W ≤ 2.0); and
T. heideri, T. hermaphroditus, and T. itoi (oval type, L/W < 
1.5).

The effectiveness of incorporating DNA data in studies 
of meiofaunal taxonomy has become apparent for many 
taxa, including Nemertodermatida (Meyer-Wachsmuth et al., 
2014), Proseriata (Casu and Curini-Galletti, 2006; Scarpa et 
al., 2015), Gastrotricha (Kieneke et al., 2012), Nemertea 
(Tulchinsky et al., 2012; Leasi and Norenburg, 2014), 
Annelida (Di Domenico et al., 2014c; Martínez et al., 2014), 
and Rotifera (Fontaneto, 2014). While our SEM observa-
tions revealed some subtle differences in ciliation pattern 
between T. itoi and T. nipponicus, before comparing their 
DNA sequences we were uncertain whether these two rep-
resented different species. DNA taxonomy (e.g., Fontaneto 
et al., 2009), or “turbo-taxonomy”—an approach combining 
COI sequences, concise morphological descriptions, and 
high-resolution digital imaging (Butcher et al., 2012; Riedel 
et al., 2013)—will likely be essential in future studies to elu-
cidate the diversity of these morphologically character-poor 
meiofauna, especially for material from areas previously not 
investigated.
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