47 research outputs found

    Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators

    Get PDF
    Recent advances in nonlinear optics have revolutionized integrated photonics, providing on-chip solutions to a wide range of new applications. Currently, state of the art integrated nonlinear photonic devices are mainly based on dielectric material platforms, such as Si₃N₄ and SiO₂. While semiconductor materials feature much higher nonlinear coefficients and convenience in active integration, they have suffered from high waveguide losses that prevent the realization of efficient nonlinear processes on-chip. Here, we challenge this status quo and demonstrate a low loss AlGaAs-on-insulator platform with anomalous dispersion and quality (Q) factors beyond 1.5 × 10⁶. Such a high quality factor, combined with high nonlinear coefficient and small mode volume, enabled us to demonstrate a Kerr frequency comb threshold of only ∼36 µW in a resonator with a 1 THz free spectral range, ∼100 times lower compared to that in previous semiconductor platforms. Moreover, combs with broad spans (>250 nm) have been generated with a pump power of ∼300 µW, which is lower than the threshold power of state-of the-art dielectric micro combs. A soliton-step transition has also been observed for the first time in an AlGaAs resonator

    Probing material absorption and optical nonlinearity of integrated photonic materials

    Full text link
    Optical microresonators with high quality (QQ) factors are essential to a wide range of integrated photonic devices. Steady efforts have been directed towards increasing microresonator QQ factors across a variety of platforms. With success in reducing microfabrication process-related optical loss as a limitation of QQ, the ultimate attainable QQ, as determined solely by the constituent microresonator material absorption, has come into focus. Here, we report measurements of the material-limited QQ factors in several photonic material platforms. High-QQ microresonators are fabricated from thin films of SiO2_2, Si3_3N4_4, Al0.2_{0.2}Ga0.8_{0.8}As and Ta2_2O5_5. By using cavity-enhanced photothermal spectroscopy, the material-limited QQ is determined. The method simultaneously measures the Kerr nonlinearity in each material and reveals how material nonlinearity and ultimate QQ vary in a complementary fashion across photonic materials. Besides guiding microresonator design and material development in four material platforms, the results help establish performance limits in future photonic integrated systems.Comment: Maodong Gao, Qi-Fan Yang and Qing-Xin Ji contributed equally to this work. 9 pages, 4 figures, 1 tabl

    Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators

    Get PDF
    We demonstrated ultra-efficient frequency comb generation in AlGaAs-on-insulator ring resonators that have a quality factor beyond 1.5*10⁶. The threshold power is as low as 36 µW

    Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators

    Get PDF
    Recent advances in nonlinear optics have revolutionized integrated photonics, providing on-chip solutions to a wide range of new applications. Currently, state of the art integrated nonlinear photonic devices are mainly based on dielectric material platforms, such as Si₃N₄ and SiO₂. While semiconductor materials feature much higher nonlinear coefficients and convenience in active integration, they have suffered from high waveguide losses that prevent the realization of efficient nonlinear processes on-chip. Here, we challenge this status quo and demonstrate a low loss AlGaAs-on-insulator platform with anomalous dispersion and quality (Q) factors beyond 1.5 × 10⁶. Such a high quality factor, combined with high nonlinear coefficient and small mode volume, enabled us to demonstrate a Kerr frequency comb threshold of only ∼36 µW in a resonator with a 1 THz free spectral range, ∼100 times lower compared to that in previous semiconductor platforms. Moreover, combs with broad spans (>250 nm) have been generated with a pump power of ∼300 µW, which is lower than the threshold power of state-of the-art dielectric micro combs. A soliton-step transition has also been observed for the first time in an AlGaAs resonator

    Attachment Capability of Antagonistic Yeast Rhodotorula glutinis to Botrytis cinerea Contributes to Biocontrol Efficacy

    Get PDF
    Rhodotorula glutinis as an antagonism show good biocontrol performance against various postharvest diseases in fruits. In the present study, strong attachment capability of R. glutinis to spores and hyphae of Botrytis cinerea was observed. Further analysis showed that certain protein components on the yeast cell surface played critical role during the interaction between R. glutinis and B. cinerea. The components mainly distributed at the poles of yeast cells and might contain glycosylation modification, as tunicamycin treated yeast cells lost attachment capability to B. cinerea. To investigate contributions of attachment capability of R. glutinis to its biocontrol efficacy, yeast cells were mutagenized with 3% methane-sulfonic acid ethyl ester (EMS), and a mutant CE4 with stable non-attaching phenotype was obtained. No significant difference was found on colony, cell morphology, reproductive ability and capsule formation between the mutant and wild type. However, there was a distinct difference in India ink positive staining patterns between the two strains. Moreover, wild type strain of R. glutinis showed better performance on inhibiting spore germination and mycelial growth of B. cinerea than CE4 strain when yeast cells and B. cinerea were co-cultured in vitro. In biocontrol assay, both wild type and CE4 strains showed significant biocontrol efficacy against gray mould caused by B. cinerea in apple fruit, whereas, control effect of CE4 strain was lower than that of wild type. Our findings provided new evidences that attachment capability of R. glutinis to B. cinerea contributed to its biocontrol efficacy

    Allocation of sulphur dioxide allowance - An analysis based on a survey of power plants in Fujian province in China

    No full text
    National Social Science Foundation [08AJY022]; "Young Scholarship Award for Excellent Doctor Student" FundThe rapid growth of the Chinese economy has led to an acceleration of electricity demand, which has enjoyed an annual growth rate above 10% during the past 20 years. However, China's coal-based resource endowment heavily influences its energy structure in the long term, which will result in more serious environment deterioration, and consequently threaten the sustainable development of China. As an effective pollution control policy that can reduce pollution at the lowest cost, emissions trading is one of the environmental policies that elicit the international interest. In addition, it is also an important economic tool to control sulphur dioxide (SO2) emissions, which has been proved successful in meeting prescribed environmental goals at lower cost than traditional regulate approaches, and now is being pilot-test in China. Since the power industry accounts for more than half of China's total coal consumption, emissions control in the power industry is the key to realize the emissions reduction objectives claimed in the "Eleventh Five-year Plan". Based on an investigation of 14 power plants in Fujian province, this article compares four different allocation methods for sulphur dioxide allowance. The results indicate that the emissions performance method and production value method are the most suitable methods for Fujian power plants. (C) 2011 Elsevier Ltd. All rights reserved

    Computer-Aided Grading of Gliomas Combining Automatic Segmentation and Radiomics

    No full text
    Gliomas are the most common primary brain tumors, and the objective grading is of great importance for treatment. This paper presents an automatic computer-aided diagnosis of gliomas that combines automatic segmentation and radiomics, which can improve the diagnostic ability. The MRI data containing 220 high-grade gliomas and 54 low-grade gliomas are used to evaluate our system. A multiscale 3D convolutional neural network is trained to segment whole tumor regions. A wide range of radiomic features including first-order features, shape features, and texture features is extracted. By using support vector machines with recursive feature elimination for feature selection, a CAD system that has an extreme gradient boosting classifier with a 5-fold cross-validation is constructed for the grading of gliomas. Our CAD system is highly effective for the grading of gliomas with an accuracy of 91.27%, a weighted macroprecision of 91.27%, a weighted macrorecall of 91.27%, and a weighted macro-F1 score of 90.64%. This demonstrates that the proposed CAD system can assist radiologists for high accurate grading of gliomas and has the potential for clinical applications

    Water column nutrient concentrations are related to excretion by benthic invertebrates in Lake Taihu, China

    No full text
    Internal release of nutrients is an important contributor to the nutrient dynamics in shallow eutrophic lakes. Zoobenthic organisms may contribute to this release by excreting nutrients to the overlaying water. Based on experiments and using results from previous experimental studies as well as field monitoring density data from 2007 to 2017, we calculated the annual and seasonal nutrient excretions of the two most common macroinvertebrates (Corbicula fluminea and Limnodrilus hoffmeisteri) in Lake Taihu, China. We compared these rates with the concentrations of NH4-N, total nitrogen (TN), PO4-P and total phosphorus (TP) in the lake water as well as with previous results of release rates from undisturbed sediments collected in the lake. The spatial distribution of nutrient excretion by the two invertebrate species varied markedly among sites and years. Regression analyses revealed significant relationships between total nutrient excretions by these two species and the concentrations of NH4-N, TN, PO4-P and TP in the lake, but with seasonal differences. The relationship was overall strongest in winter, followed by spring, and weakest in summer and autumn. The flux of NH4-N and PO4-P released by the two macroinvertebrate species were equivalent to as much as 50% and 66%, respectively, of the sediment release recorded in lab experiments under undisturbed conditions; however, the percentages would be somewhat lower under field conditions where the sediment is subjected to frequent wind-induced resuspension and fish disturbance, enhancing the release rates. The release declined during the study period due to a reduction in the density of macroinvertebrates, perhaps indicating increasing stocking of fish since 2007. Our results indicate that benthic invertebrates are important contributor to the internal loading in shallow eutrophic lakes
    corecore