756 research outputs found

    Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China)

    Get PDF
    In 1985, the collapse of the tailing dam in Chenzhou lead/zinc mine (Hunan, southern China) led to the spread of mining waste spills on the farmland along the Dong River. After the accident, an urgent soil cleaning up was carried out in some places. Seventeen years later, cereal (rice, maize, and sorghum), pulses (soybean, Adzuki bean, mung bean and peanut), vegetables (ipomoea, capsicum, taro and string bean) and the rooted soils were sampled at four sites: (1) the mining area (SZY), (2) the area still covered with the mining tailing spills (GYB), (3) the cleaned area from mining tailing spills (JTC), and (4) a background site (REF). Metal concentrations in the crops and soils were analyzed to evaluate the long-term effects of the spilled waste on the soil and the potential human exposure through food chains. The results showed that the physical–chemical properties of the soils obviously changed due to the different farming styles used by each individual farmer. Leaching effects and plant extraction of metals from some soils were quite weak. Certain soils were still heavily polluted with As, Cd, Zn, Pb and Cu. The contamination levels were in the order of GYB>SZY>JTC showing that the clean-up treatment was effective. The maximum allowable concentration (MAC) levels for Chinese agricultural soils were still highly exceeded, particularly for As and Cd (followed by Zn, Pb and Cu), with mean concentrations of 709 and 7.6 mg kg−1, respectively. These concentrations exceed the MAC levels by 24 times for As and 13 times for Cd at GYB. Generally, the edible leaves or stems of crops were more heavily contaminated than seeds or fruits. Ipomoea was the most severely contaminated crop. The concentrations of Cd and Pb were 3.30 and 76.9 mg kg−1 in ipomoea leaves at GYB, which exceeded the maximum permit levels (0.5 mg kg−1 for Cd and 9 mg kg−1 for Pb) by 6.6 and 8.5 times, respectively. Taro (+skin) could accumulate high concentrations of Zn and Cd in the edible stem, and rice and capsicum had high Cd concentration in the edible parts. However, the toxic element concentrations in maize, sorghum, Adzuki bean, soybean and mung bean remained lower than the threshold levels. The bio-accumulation factors (BAFs) of crops were in the order: Cd>Zn>Cu>Pb>As. BAF was typically lower in the edible seeds or fruits than in stems and leaves. The accumulation effect strongly depends on the crop's physiological properties, the mobility, of the metals, and the availability of metals in soils but not entirely on the total element concentrations in the soils. Even so, the estimated daily intake amount of Cu, Zn, Cd, and Pb from the crops grown in the affected three sites and arsenic at SZY and GYB exceeded the RDA (Recommended dietary allowance) levels. Subsequently, the crops grown in Chenzhou Pb/Zn mine waste affected area might have a hazardous effect on the consumer's health. This area still needs effective measures to cure the As, Cd, Pb, Zn and Cu contamination

    Interactions between cadmium and lead with acidic soils: Experimental evidence of similar adsorption patterns for a wide range of metal concentrations and the implications of metal migration

    Get PDF
    The importance of high- and low-affinity surface sites for cadmium and lead adsorption in typical European and Asian soils was investigated. Adsorption experiments on surface and deep horizons of acidic brown (Vosges, France) and red loess soils (Hunan, China) were performed at 25 ◦C as a function of the pH (3.5–8) and a large range of metal concentrations in solution (10−9–10−4 mol l−1). We studied the adsorption kinetics using a Cd2+-selective electrode and desorption experiments as a function of the solid/solution ratio and pH. At a constant solution pH, all samples exhibited similar maximal adsorption capacities (4.0 ± 0.5 µmol/g Cd and 20 ± 2 µmol/g Pb). A constant slope of adsorbed–dissolved concentration dependence was valid over 5 orders of magnitude of metal concentrations. Universal Langmuir and Freundlich equations and the SCM formalism described the adsorption isotherms and the pH-dependent adsorption edge over very broad ranges of metal concentrations, indicating no high- or low-affinity sites for metal binding at the soil surface under these experimental conditions. At pH 5, Cd and Pb did not compete, in accordance with the SCM. The metal adsorption ability exceeded the value for soil protection by two orders of magnitude, but only critical load guarantees soil protection since metal toxicity depends on metal availability

    Soil heavy metal contamination and acid deposition: experimental approach on two forest soils in Hunan, Southern China

    Get PDF
    In 1985, a tailing dam collapsed in Hunan province (southern China) leading to soil contamination by heavy metals from the tailings waste. Moreover, acid deposition becomes more and more serious in this area. In this context, two forest soils (a red soil and a yellow red soil, typically and commonly found in southern China) were collected from Hunan. The objectives are (i) to determine releases and changes in speciation fractions of heavy metals (especially Cd, Cu, and Zn) when the soils are contaminated with heavy metals and affected by simulated acid deposition, and (ii) to study effects of soil heavy metals and acid deposition on releases of soil Ca2+, Mg2+, and Al3+. The soil samples were soaked in the solutions of CdCl2, CuCl2, and ZnCl2 for 15 days to make contaminated soils containing 200 mg kg1 of Cd, Cu, and Zn. Then the contaminated soils and the original soils were extracted with five simulated acid deposition solutions (pH ranged from 5.6 to 3.0 and total dissolved salts increased). The experimental results indicate that acid deposition leads to great releases of soil heavy metals due to complicated soil chemical processes, mostly cation exchange and partly dissolution of minerals at pH lower than 4.2. These released heavy metals come mainly from soil exchangeable pools and other labile fractions. Releases of heavy metals are closely controlled by pH values or, in some cases, total cation contents in acid deposition; meanwhile, concentrations of heavy metals are negatively related to the relevant pH values in soil equilibrium solutions when pH values are in a range of 4.2–5.1. From the point of view of heavy metal releases, Zn is the most sensitive to acid deposition, followed by Cd and Cu. Compared with the original soils, the contaminated soils could probably release more base cations Ca2+ and Mg2+ and less Al3+. Greater amounts of Cd, Cu, Zn, and Al released from Soil B show that this soil is more sensitive to acid deposition, and we could expect serious environmental contamination in Soil B area if mining activities and acid deposition are not under control in the future

    Effects of acid rain on competitive releases of Cd, Cu, and Zn from two natural soils and two contaminated soils in hunan, China

    Get PDF
    Leaching experiments of rebuilt soil columns with two simulated acid rain solutions (pH 4.6– 3.8) were conducted for two natural soils and two artificial contaminated soils from Hunan, southcentralChina, to study effects of acid rain on competitive releases of soil Cd, Cu, and Zn. Distilled water was used in comparison. The results showed that the total releases were Zn>Cu>Cd for the natural soils and Cd>Zn≫Cu for the contaminated soils, which reflected sensitivity of these metals to acid rain. Leached with different acid rain, about 26–76% of external Cd and 11–68% external Zn were released,but more than 99% of external Cu was adsorbed by the soils, and therefore Cu had a different sorption and desosption pattern from Cd and Zn. Metal releases were obviously correlated with releases of TOC in the leachates, witch could be described as an exponential equation.Compared with the natural soils,acid rain not only led to changes in total metal contents, but also in metal fraction distributions in the contaminated soils. More acidifed soils had a lower sorption capaity to metals, mostlt related to soil properties such as pH organic matter, soil particles, adsorbed SO42-, exchangeable AI3+ and H+, and contents of Fe2O3 and AI2O3

    Water, rather than temperature, dominantly impacts how soil fauna affect dissolved carbon and nitrogen release from fresh litter during early litter decomposition

    Get PDF
    Longstanding observations suggest that dissolved materials are lost from fresh litter through leaching, but the role of soil fauna in controlling this process has been poorly documented. In this study, a litterbag experiment employing litterbags with different mesh sizes (3 mm to permit soil fauna access and 0.04 mm to exclude fauna access) was conducted in three habitats (arid valley, ecotone and subalpine forest) with changes in climate and vegetation types to evaluate the effects of soil fauna on the concentrations of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) during the first year of decomposition. The results showed that the individual density and community abundance of soil fauna greatly varied among these habitats, but Prostigmata, Isotomidae and Oribatida were the dominant soil invertebrates. At the end of the experiment, the mass remaining of foliar litter ranged from 58% for shrub litter to 77% for birch litter, and the DOC and TDN concentrations decreased to 54%-85% and increased to 34%-269%, respectively, when soil fauna were not present. The effects of soil fauna on the concentrations of both DOC and TDN in foliar litter were greater in the subalpine forest (wetter but colder) during the winter and in the arid valley (warmer but drier) during the growing season, and this effect was positively correlated with water content. Moreover, the effects of fauna on DOC and TDN concentrations were greater for high-quality litter and were related to the C/N ratio. These results suggest that water, rather than temperature, dominates how fauna affect the release of dissolved substances from fresh litter

    Complex toxic effects of Cd2+, Zn2+, and acid rain on growth of kidney bean (Phaseolus vulgaris L)

    Get PDF
    Complex toxic effects of Cd2+, Zn2+, and acid rain on growth of kidney bean (Phaseolus vulgaris L) were studied in a pot experiment by measurement of fresh weights of the plants, determination of surperoxide dismutase (SOD), peroxidase (POD), and lipid peroxidation (MDA) in the plant organs, and observation of injury symptoms. The experimental results demonstrated that all treatments of Cd2+, Zn2+, and/or acid rain significantly decreased fresh weights of kidney bean and caused toxic effects on growth of the plants, especially higher amounts of Cd2+ and Zn2+ and higher acidity of acid rain. Combination of these three pollutant factors resulted in more serious toxic effects than any single pollutant and than combinations of any two pollutants. SOD, POD, and MDA in the plant organs changed with different pollution levels, but MDA content in the leaves showed the best relationship between the pollution levels and toxic effects

    Development and Validation of an RNA-Seq-Based Prognostic Signature in Neuroblastoma

    Get PDF
    Objective: The stratification of neuroblastoma (NBL) prognosis remains difficult. RNA-based signatures might be able to predict prognosis, but independent cross-platform validation is still rare. Methods: RNA-Seq-based profiles from NBL patients were acquired and then analyzed. The RNA-Seq prognostic index (RPI) and the clinically adjusted RPI (RCPI) were successively established in the training cohort (TARGET-NBL) and then verified in the validation cohort (GSE62564). Survival prediction was assessed using a time-dependent receiver operating characteristic (ROC) curve and area under the ROC curve (AUC). Functional enrichment analysis of the genes was conducted using bioinformatics methods. Results: In the training cohort, 10 gene pairs were eventually integrated into the RPI. In both cohorts, the high-risk group had poor overall survival (OS) (P < 0.001 and P < 0.001, respectively) and favorable event-free survival (EFS) (P = 0.00032 and P = 0.06, respectively). ROC curve analysis also showed that the RPI predicted OS (60 month AUC values of 0.718 and 0.593, respectively) and EFS (60 month AUC values of 0.627 and 0.852, respectively) well in both the training and validation cohorts. Clinicopathological indicators associated with prognosis in the univariate and multivariate regression analyses were identified and added to the RPI to form the RCPI. The RCPI was also used to divide populations into different risk groups, and the high-risk group had poor OS (P < 0.001 and P < 0.001, respectively) and EFS (P < 0.05 and P < 0.05, respectively). Finally, the RCPI had higher accuracy than the RPI for the prediction of OS (60 month AUC values of 0.730 and 0.852, respectively) and EFS (60 month AUC values of 0.663 and 0.763, respectively) in both the training and validation cohorts. Moreover, these differentially expressed genes may be involved in certain NBL-related events. Conclusions: The RCPI could reliably categorize NBL patients based on different risks of death

    Formation of forest gaps accelerates C, N and P release from foliar litter during 4 years of decomposition in an alpine forest

    Get PDF
    Relative to areas under canopy, the soils in forest gaps receive more irradiance and rainfall (snowfall); this change in microclimate induced by forest gaps may influence the release of carbon (C) and nutrients during litter decomposition. However, great uncertainty remains about the effects of forest gaps on litter decomposition. In this study, we incubated foliar litters from six tree and shrub species in forest gaps and canopy plots and measured the release of C, nitrogen (N) and phosphorus (P) in different snow cover periods in an alpine forest from 2012 to 2016. We found that N was retained by 24-46% but that P was immediately released during an early stage of decomposition. However, forest gaps decreased litter N retention, resulting in more N and P being released from decomposing litters for certain species (i.e., larch, birch and willow litters). Moreover, the release of C and nutrients during litter decomposition stimulated by forest gaps was primarily driven by warmer soil temperature in this high-altitude forest. We conclude that gap formation during forest regeneration may accelerate C turnover and nutrient cycling and that this stimulation might be regulated by the litter species in this seasonally snow-covered forest.Peer reviewe
    corecore