440 research outputs found

    Simultaneous quantization of bulk conduction and valence states through adsorption of nonmagnetic impurities on Bi2Se3

    Full text link
    Exposing the (111) surface of the topological insulator Bi2Se3 to carbon monoxide results in strong shifts of the features observed in angle-resolved photoemission. The behavior is very similar to an often reported `aging' effect of the surface and it is concluded that this aging is most likely due to the adsorption of rest gas molecules. The spectral changes are also similar to those recently reported in connection with the adsorption of the magnetic adatom Fe. All spectral changes can be explained by a simultaneous confinement of the conduction band and valence band states. This is only possible because of the unusual bulk electronic structure of Bi2Se3. The valence band quantization leads to spectral features which resemble those of a band gap opening at the Dirac point.Comment: 5 pages, 4 figure

    Intra- and Interband Electron Scattering in the Complex Hybrid Topological Insulator Bismuth Bilayer on Bi2_2Se3_3

    Get PDF
    The band structure, intra- and interband scattering processes of the electrons at the surface of a bismuth-bilayer on Bi2_2Se3_3 have been experimentally investigated by low-temperature Fourier-transform scanning tunneling spectroscopy. The observed complex quasiparticle interference patterns are compared to a simulation based on the spin-dependent joint density of states approach using the surface-localized spectral function calculated from first principles as the only input. Thereby, the origin of the quasiparticle interferences can be traced back to intraband scattering in the bismuth bilayer valence band and Bi2_2Se3_3 conduction band, and to interband scattering between the two-dimensional topological state and the bismuth-bilayer valence band. The investigation reveals that the bilayer band gap, which is predicted to host one-dimensional topological states at the edges of the bilayer, is pushed several hundred milli-electronvolts above the Fermi level. This result is rationalized by an electron transfer from the bilayer to Bi2_2Se3_3 which also leads to a two-dimensional electron state in the Bi2_2Se3_3 conduction band with a strong Rashba spin-splitting, coexisting with the topological state and bilayer valence band.Comment: 11 pages, 5 figure

    A Helium-Surface Interaction Potential of Bi2_2Te3_3(111) from Ultrahigh-Resolution Spin-Echo Measurements

    Full text link
    We have determined an atom-surface interaction potential for the He−-Bi2_2Te3_3(111) system by analysing ultrahigh resolution measurements of selective adsorption resonances. The experimental measurements were obtained using 3^3He spin-echo spectrometry. Following an initial free-particle model analysis, we use elastic close-coupling calculations to obtain a three-dimensional potential. The three-dimensional potential is then further refined based on the experimental data set, giving rise to an optimised potential which fully reproduces the experimental data. Based on this analysis, the He−-Bi2_2Te3_3(111) interaction potential can be described by a corrugated Morse potential with a well depth D=(6.22±0.05) meVD=(6.22\pm0.05)~\mathrm{meV}, a stiffness κ=(0.92±0.01) A˚−1\kappa =(0.92\pm0.01)~\mathrm{\AA}^{-1} and a surface electronic corrugation of (9.6±0.2)(9.6\pm0.2)% of the lattice constant. The improved uncertainties of the atom-surface interaction potential should also enable the use in inelastic close-coupled calculations in order to eventually study the temperature dependence and the line width of selective adsorption resonances
    • …
    corecore