493 research outputs found

    Sulphur and Carbon Isotopes as Tracers of Past Sub-seafloor Microbial Activity

    Get PDF
    Microbial life below the seafloor has changed over geological time, but these changes are often not obvious, as they are not recorded in the sediment. Sulphur (S) isotope values in pyrite extracted from a Plio- to Holocene sequence of the Peru Margin (Ocean Drilling Program, ODP, Site 1229) show a down-core pattern that correlates with the pattern of carbon (C) isotopes in diagenetic dolomite. Early formation of the pyrite is indicated by the mineralogical composition of iron, showing a high degree of pyritization throughout the sedimentary sequence. Hence, the S-record could not have been substantially overprinted by later pyrite formation. The S- and C-isotope profiles show, thus, evidence for two episodes of enhanced microbial methane production with a very shallow sulphate-methane transition zone. The events of high activity are correlated with zones of elevated organic C content in the stratigraphic sequence. Our results demonstrate how isotopic signatures preserved in diagenetic mineral phases provide information on changes of past biogeochemical activity in a dynamic sub-seafloor biosphere

    The Biogeochemical Sulfur Cycle of Marine Sediments

    Get PDF
    Microbial dissimilatory sulfate reduction to sulfide is a predominant terminal pathway of organic matter mineralization in the anoxic seabed. Chemical or microbial oxidation of the produced sulfide establishes a complex network of pathways in the sulfur cycle, leading to intermediate sulfur species and partly back to sulfate. The intermediates include elemental sulfur, polysulfides, thiosulfate, and sulfite, which are all substrates for further microbial oxidation, reduction or disproportionation. New microbiological discoveries, such as long-distance electron transfer through sulfide oxidizing cable bacteria, add to the complexity. Isotope exchange reactions play an important role for the stable isotope geochemistry and for the experimental study of sulfur transformations using radiotracers. Microbially catalyzed processes are partly reversible whereby the back-reaction affects our interpretation of radiotracer experiments and provides a mechanism for isotope fractionation. We here review the progress and current status in our understanding of the sulfur cycle in the seabed with respect to its microbial ecology, biogeochemistry, and isotope geochemistry

    Factors controlling the carbon isotope composition of dissolved inorganic carbon and methane in marine porewater: An evaluation by reaction-transport modelling

    Get PDF
    Carbon isotope compositions of dissolved inorganic carbon (DIC) and methane (CH4) in porewater of marine sediments at seafloor temperatures show very large variation covering a δ13C range from −100‰ to +35‰. These extreme values are the result of isotope fractionation during microbial carbon metabolism, but the combined effect of all factors controlling the isotope distributions is still not completely understood. We used a model approach to evaluate the effects of reaction and transport on carbon isotope distributions in modern sediment porewater under steady state. Simulated δ13CDIC profiles typically show negative values in the sulphate reduction zone and more positive values in the methanogenic zone. With increasing depth in the methanogenic zone, δ13C values approach a distribution where the offset of δ13CDIC from δ13C of total organic carbon (TOC) to more positive values is similar to the offset of δ13CCH4 to more negative values (δ13CDIC and δ13CCH4 approach a symmetric distribution relative to δ13CTOC). The model never exceeds this symmetry of the DIC-CH4 couple towards more positive values under steady-state conditions in a purely diffusive system. Our model shows that to reach an offset in δ13C between DIC and CH4 in the order of 70‰, as frequently observed in methanogenic zones, a larger fractionation than reported from culture experiments with acetoclastic or autotrophic methanogens would be required. In fact, the observed isotope offset in natural systems would be consistent with the known inorganic equilibrium fractionation factor at in-situ temperature, which may suggest isotope exchange via a microbial pathway, during methanogenesis. Furthermore, the model reproduces strongly negative δ13CCH4 values at the sulphate methane-transition (SMT) as result of a reverse flux of carbon from DIC to CH4 during AOM. Such a reverse AOM has no influence on the δ13CDIC at the SMT as methane is almost completely consumed. Only at high sedimentation rate combined with low porosity, δ13CDIC values significantly more negative than δ13CTOC occur at the SMT

    Bioturbation as a key driver behind the dominance of Bacteria over Archaea in near-surface sediment

    Get PDF
    The factors controlling the relative abundances of Archaea and Bacteria in marine sediments are poorly understood. We determined depth distributions of archaeal and bacterial 16S rRNA genes by quantitative PCR at eight stations in Aarhus Bay, Denmark. Bacterial outnumber archaeal genes 10–60-fold in uppermost sediments that are irrigated and mixed by macrofauna. This bioturbation is indicated by visual observations of sediment color and faunal tracks, by porewater profiles of dissolved inorganic carbon and sulfate, and by distributions of unsupported 210Pb and 137Cs. Below the depth of bioturbation, the relative abundances of archaeal genes increase, accounting for one third of 16S rRNA genes in the sulfate zone, and half of 16S rRNA genes in the sulfate-methane transition zone and methane zone. Phylogenetic analyses reveal a strong shift in bacterial and archaeal community structure from bioturbated sediments to underlying layers. Stable isotopic analyses on organic matter and porewater geochemical gradients suggest that macrofauna mediate bacterial dominance and affect microbial community structure in bioturbated sediment by introducing fresh organic matter and high-energy electron acceptors from overlying seawater. Below the zone of bioturbation, organic matter content and the presence of sulfate exert key influences on bacterial and archaeal abundances and overall microbial community structure.ISSN:2045-232

    Glacial controls on redox-sensitive trace element cycling in Arctic fjord sediments (Spitsbergen, Svalbard)

    Get PDF
    Glacial meltwater is an important source of bioessential trace elements to high latitude oceans. Upon delivery to coastal waters, glacially sourced particulate trace elements are processed during early diagenesis in sediments and may be sequestered or recycled back to the water column depending on local biogeochemical conditions. In the glaciated fjords of Svalbard, large amounts of reactive Fe and Mn (oxyhydr)oxides are delivered to the sediment by glacial discharge, resulting in pronounced Fe and Mn cycling concurrent with microbial sulfate reduction. In order to investigate the diagenetic cycling of selected trace elements (As, Co, Cu, Mo, Ni, and U) in this system, we collected sediment cores from two Svalbard fjords, Van Keulenfjorden and Van Mijenfjorden, in a transect along the head-to-mouth fjord axis and analyzed aqueous and solid phase geochemistry with respect to trace elements, sulfur, and carbon along with sulfate reduction rates. We found that Co and Ni associate with Fe and Mn (oxyhydr)oxides and enter the pore water upon reductive metal oxide dissolution. Copper is enriched in the solid phase where sulfate reduction rates are high, likely due to reactions with H2S and the formation of sulfide minerals. Uranium accumulates in the solid phase likely following reduction by both Fe- and sulfate-reducing bacteria, while Mo adsorbs to Fe and Mn (oxyhydr)oxides in the surface sediment and is removed from the pore water at depth where sulfidization makes it particle-reactive. Arsenic is tightly coupled to Fe redox cycling and its partitioning between solid and dissolved phases is influenced by competition with FeS for adsorption sites on crystalline Fe oxides. Differences in trace element cycling between the two fjords suggest delivery of varying amount and composition of tidewater glacier (Van Keulenfjorden) and meltwater stream (Van Mijenfjorden) material, likely related to oxidative processes occurring in meltwater streams. This processing produces a partially weathered, more reactive sediment that is subject to stronger redox cycling of Fe, Mn, S, and associated trace elements upon delivery to Van Mijenfjorden. With climate warming, the patterns of trace element cycling observed in Van Mijenfjorden may also become more prevalent in other Svalbard fjords as tidewater glaciers retreat into meltwater stream valleys

    Freezing Tolerance of Thermophilic Bacterial Endospores in Marine Sediments

    Get PDF
    Dormant endospores of anaerobic, thermophilic bacteria found in cold marine sediments offer a useful model for studying microbial biogeography, dispersal, and survival. The dormant endospore phenotype confers resistance to unfavorable environmental conditions, allowing dispersal to be isolated and studied independently of other factors such as environmental selection. To study the resilience of thermospores to conditions relevant for survival in extreme cold conditions, their viability following different freezing treatments was tested. Marine sediment was frozen at either −80°C or −20°C for 10 days prior to pasteurization and incubation at +50°C for 21 days to assess thermospore viability. Sulfate reduction commenced at +50°C following both freezing pretreatments indicating persistence of thermophilic endospores of sulfate-reducing bacteria. The onset of sulfate reduction at +50°C was delayed in −80°C pretreated microcosms, which exhibited more variability between triplicates, compared to −20°C pretreated microcosms and parallel controls that were not frozen in advance. Microbial communities were evaluated by 16S rRNA gene amplicon sequencing, revealing an increase in the relative sequence abundance of thermophilic endospore-forming Firmicutes in all microcosms. Different freezing pretreatments (−80°C and −20°C) did not appreciably influence the shift in overall bacterial community composition that occurred during the +50°C incubations. Communities that had been frozen prior to +50°C incubation showed an increase in the relative sequence abundance of operational taxonomic units (OTUs) affiliated with the class Bacilli, relative to unfrozen controls. These results show that freezing impacts but does not obliterate thermospore populations and their ability to germinate and grow under appropriate conditions. Indeed the majority of the thermospore OTUs detected in this study (21 of 22) could be observed following one or both freezing treatments. These results are important for assessing thermospore viability in frozen samples and following cold exposure such as the very low temperatures that would be encountered during panspermia

    Marine Deep Biosphere Microbial Communities Assemble in Near-Surface Sediments in Aarhus Bay

    Get PDF
    Analyses of microbial diversity in marine sediments have identified a core set of taxa unique to the marine deep biosphere. Previous studies have suggested that these specialized communities are shaped by processes in the surface seabed, in particular that their assembly is associated with the transition from the bioturbated upper zone to the nonbioturbated zone below. To test this hypothesis, we performed a fine-scale analysis of the distribution and activity of microbial populations within the upper 50 cm of sediment from Aarhus Bay (Denmark). Sequencing and qPCR were combined to determine the depth distributions of bacterial and archaeal taxa (16S rRNA genes) and sulfate-reducing microorganisms (SRM) (dsrB gene). Mapping of radionuclides throughout the sediment revealed a region of intense bioturbation at 0–6 cm depth. The transition from bioturbated sediment to the subsurface below (7 cm depth) was marked by a shift from dominant surface populations to common deep biosphere taxa (e.g., Chloroflexi and Atribacteria). Changes in community composition occurred in parallel to drops in microbial activity and abundance caused by reduced energy availability below the mixed sediment surface. These results offer direct evidence for the hypothesis that deep subsurface microbial communities present in Aarhus Bay mainly assemble already centimeters below the sediment surface, below the bioturbation zone
    • …
    corecore