20 research outputs found

    Implications of Deep Electrode Insertion on Cochlear Implant Fitting

    Get PDF
    Using long Med-El Combi40+ electrode arrays, it is now possible to cover the whole range of the cochlea, up to about two turns. Such insertion depths have received little attention. To evaluate the contribution of deeply inserted electrodes, five Med-El cochlear implant users were tested on vowel and consonant identification tests with fittings with first one, two, and up to five apical electrodes being deactivated. In addition, subjects performed pitch-ranking experiments, using loudness-balanced stimuli, to identify electrodes creating pitch confusions. Radiographs were taken to measure each electrode insertion depth. All subjects used each modified fitting for two periods of about 3weeks. During the experiment, the same stimulation rate and frequency range were maintained across all the fittings used for each individual subject. After each trial period the subject had to perform three consonant and three vowel identification tests. All subjects showed deep electrode insertions ranging from 605° to 720°. The two subjects with the deepest electrode insertions showed significantly increased vowel- and consonant-identification performances with fittings with the two or three most apical electrodes deactivated compared to their standard fitting with all available electrodes activated. The other three subjects did not show significant improvements in performance when one or two of their most apical electrodes were deactivated. Four out of five subjects preferred to continue use of a fitting with one or more apical electrodes deactivated. The two subjects with the deepest insertions also showed pitch confusions between their most apical electrodes. Two possible reasons for these results are discussed. One is to reduce neural interactions related to electrodes producing pitch confusions. Another is to improve the alignment of the frequency components of sounds coded by the electrical signals delivered to each electrode to the overall pitch of the auditory perception produced by the electrical stimulation of auditory nerve fiber

    fMRI Evidence for Activation of Multiple Cortical Regions in the Primary Auditory Cortex of Deaf Subjects Users of Multichannel Cochlear Implants

    Get PDF
    To investigate the activation of the auditory cortex by fMRI, three deaf subjects users of the Ineraid cochlear implant participated in our study. Possible interference between fMRI acquisition and the implanted electrodes was controlled and safe experimental conditions were obtained. For each subject, electrical stimuli were applied on different intracochlear electrodes, in monopolar mode. Stimulation of each electrode was actually producing auditory sensations of different pitches, as demonstrated by psychophysical pitch-ranking measurements in the same subjects. Because deaf subjects did not hear scanner noise, the data were collected in ‘silent background' conditions, i.e. as a result of pure auditory sensations. Functional maps showed activation of the primary auditory cortex, predominantly in the left hemisphere. Stimulation of each different intracochlear electrode revealed different clusters of activation. After cluster grouping, at least three regions have been identified in the auditory cortex of each subject, and comparisons with previous architectonic and functional studies are proposed. However, a tonotopic organization could not be clearly identified within each region. These arguments, obtained without interference with unwanted scanner noise, plead in favor of a functional subdivision of the primary auditory cortex into multiple cortical regions in cochlear implant user

    Acoustic to Electric Pitch Comparisons in Cochlear Implant Subjects with Residual Hearing

    Get PDF
    The aim of this study was to assess the frequency-position function resulting from electric stimulation of electrodes in cochlear implant subjects with significant residual hearing in their nonimplanted ear. Six cochlear implant users compared the pitch of the auditory sensation produced by stimulation of an intracochlear electrode to the pitch of acoustic pure tones presented to their contralateral nonimplanted ear. Subjects were implanted with different Clarion® electrode arrays, designed to lie close to the inner wall of the cochlea. High-resolution radiographs were used to determine the electrode positions in the cochlea. Four out of six subjects presented electrode insertions deeper than 450°. We used a two-interval (one acoustic, one electric), two-alternative forced choice protocol (2I-2AFC), asking the subject to indicate which stimulus sounded the highest in pitch. Pure tones were used as acoustic stimuli. Electric stimuli consisted of trains of biphasic pulses presented at relatively high rates [higher than 700 pulses per second (pps)]. First, all electric stimuli were balanced in loudness across electrodes. Second, acoustic pure tones, chosen to approximate roughly the pitch sensation produced by each electrode, were balanced in loudness to electric stimuli. When electrode insertion lengths were used to describe electrode positions, the pitch sensations produced by electric stimulation were found to be more than two octaves lower than predicted by Greenwood's frequency-position function. When insertion angles were used to describe electrode positions, the pitch sensations were found about one octave lower than the frequency-position function of a normal ear. The difference found between both descriptions is because of the fact that these electrode arrays were designed to lie close to the modiolus. As a consequence, the site of excitation produced at the level of the organ of Corti corresponds to a longer length than the electrode insertion length, which is used in Greenwood's function. Although exact measurements of the round window position as well as the length of the cochlea could explain the remaining one octave difference found when insertion angles were used, physiological phenomena (e.g., stimulation of the spiral ganglion cells) could also create this difference. From these data, analysis filters could be determined in sound coding strategies to match the pitch percepts elicited by electrode stimulation. This step might be of main importance for music perception and for the fitting of bilateral cochlear implant

    Consensus Panel on a Cochlear Coordinate System Applicable in Histologic, Physiologic, and Radiologic Studies of the Human Cochlea

    Get PDF
    Hypothesis—An objective cochlear framework, for evaluation of the cochlear anatomy and description of the position of an implanted cochlear implant electrode, would allow the direct comparison of measures performed within the various sub-disciplines involved in cochlear implant research. Background—Research on the human cochlear anatomy in relation to tonotopy and cochlear implantation is conducted by specialists from numerous disciplines such as histologists, surgeons, physicists, engineers, audiologists and radiologists. To allow accurate comparisons between and combinations of previous and forthcoming scientific and clinical studies, cochlear structures and electrode positions must be specified in a consistent manner. Methods—Researchers with backgrounds in the various fields of inner ear research as well as representatives of the different manufacturers of cochlear implants (Advanced Bionics Corp, Med-El, Cochlear Corp) were involved in consensus meetings held in Dallas, March 2005 and Asilomar, August 2005. Existing coordinate systems were evaluated and requisites for an objective cochlear framework were discussed. Results—The consensus panel agreed upon a 3-dimensional, cylindrical coordinate system of the cochlea using the “Cochlear View” as a basis and choosing a z-axis through the modiolus. The zero reference angle was chosen at the centre of the round window, which has a close relationship to the basal end of the Organ of Corti. Conclusions—Consensus was reached on an objective cochlear framework, allowing the outcomes of studies from different fields of research to be compared directly

    Low Frequency Microstimulation Is Locally Excitatory in Patients With Epilepsy

    No full text
    Deep brain stimulation (DBS) could become a palliative treatment for patients with drug-resistant epilepsy for which surgery cannot be proposed. The objective of this study was to perform microstimulation to measure the effects of DBS in epilepsy locally at the level of a few neurons, with microelectrode recordings, for the first time in patients with epilepsy. Microelectrode recordings were performed before, during and after microstimulation in nine patients with refractory epilepsy. Neuronal spikes were successfully extracted from multi-unit recordings with clustering in six out of seven patients during hippocampal and in one out of two patients during cortical dysplasia microstimulation (1 Hz, charge-balanced biphasic waveform, 60 μs/ph, 25 μA). The firing rates increased in four out of the six periods of microstimulation that could be analyzed. The firing rates were found higher than before microstimulation in all eight periods with increases reaching significance in six out of eight periods. Low-frequency microstimulation was hence sufficient to induce neuronal excitation lasting beyond the stimulation period. No inhibition was observed. This report presents the first evidence that microstimulation performed in epileptic patients produced locally neuronal excitation. Hence neuronal excitation is shown here as the local mechanism of action of DBS. This local excitation is in agreement with epileptogenic effects of low-frequency hippocampal macrostimulation

    Low Frequency Microstimulation Is Locally Excitatory in Patients With Epilepsy

    No full text
    Deep brain stimulation (DBS) could become a palliative treatment for patients with drug-resistant epilepsy for which surgery cannot be proposed. The objective of this study was to perform microstimulation to measure the effects of DBS in epilepsy locally at the level of a few neurons, with microelectrode recordings, for the first time in patients with epilepsy. Microelectrode recordings were performed before, during and after microstimulation in nine patients with refractory epilepsy. Neuronal spikes were successfully extracted from multi-unit recordings with clustering in six out of seven patients during hippocampal and in one out of two patients during cortical dysplasia microstimulation (1 Hz, charge-balanced biphasic waveform, 60 μs/ph, 25 μA). The firing rates increased in four out of the six periods of microstimulation that could be analyzed. The firing rates were found higher than before microstimulation in all eight periods with increases reaching significance in six out of eight periods. Low-frequency microstimulation was hence sufficient to induce neuronal excitation lasting beyond the stimulation period. No inhibition was observed. This report presents the first evidence that microstimulation performed in epileptic patients produced locally neuronal excitation. Hence neuronal excitation is shown here as the local mechanism of action of DBS. This local excitation is in agreement with epileptogenic effects of low-frequency hippocampal macrostimulation

    fncir-12-00022-table.gif

    No full text
    <p>Deep brain stimulation (DBS) could become a palliative treatment for patients with drug-resistant epilepsy for which surgery cannot be proposed. The objective of this study was to perform microstimulation to measure the effects of DBS in epilepsy locally at the level of a few neurons, with microelectrode recordings, for the first time in patients with epilepsy. Microelectrode recordings were performed before, during and after microstimulation in nine patients with refractory epilepsy. Neuronal spikes were successfully extracted from multi-unit recordings with clustering in six out of seven patients during hippocampal and in one out of two patients during cortical dysplasia microstimulation (1 Hz, charge-balanced biphasic waveform, 60 μs/ph, 25 μA). The firing rates increased in four out of the six periods of microstimulation that could be analyzed. The firing rates were found higher than before microstimulation in all eight periods with increases reaching significance in six out of eight periods. Low-frequency microstimulation was hence sufficient to induce neuronal excitation lasting beyond the stimulation period. No inhibition was observed. This report presents the first evidence that microstimulation performed in epileptic patients produced locally neuronal excitation. Hence neuronal excitation is shown here as the local mechanism of action of DBS. This local excitation is in agreement with epileptogenic effects of low-frequency hippocampal macrostimulation.</p
    corecore