27 research outputs found

    Experimental petrology constraints on the recycling of mafic cumulate:a focus on Cr-spinel from the Rum Eastern Layered Intrusion, Scotland

    Get PDF
    Reactive liquid flow is a common process in layered intrusions and more generally in episodically refilled magma chambers. Interaction between newly injected melt and cumulates, or crystal mushes, perturbs the liquid line of descent of the melt and modifies mineral chemistry and texture. We present insights into the effects of assimilation of mafic cumulate rocks (gabbro, troctolite) by cogenetic Mg-rich basalt liquid using one-atmosphere, controlled fO2 phase equilibrium experiments on picritic parental liquid to the Rum layered intrusion, Scotland. For picrite-only experiments at fO2 = QFM, Cr-spinel (Cr# = Cr/[Cr + Al + Fe3+] = 0.43; Fe# = Fe2+/[Mg + Fe2+] = 0.32) saturates at 1320 °C, olivine (Fo88) at ~1290 °C, plagioclase (An77) at 1200 °C, and clinopyroxene (Mg#: 0.81) at 1180 °C. In melting experiments on picrite + gabbro mixtures, plagioclase (1230 °C, An80) and clinopyroxene (1200 °C, Mg#: 0.85) saturation temperature and mode are increased significantly. Cr-spinel in these experiments has a distinctive, low Fe#. In melting experiments on picrite + troctolite mixtures, plagioclase (An86) saturates at 1240 °C and clinopyroxene (Mg#: 0.81) at 1170 °C. Al-rich spinel crystallizes at high temperature (>1220 °C) and becomes more Cr-rich upon cooling, reaching the highest Cr# = 0.47 at 1180 °C (0.54 at QFM-1.2). The experimental results confirm that plagioclase and clinopyroxene stability plays a major role in determining the composition of coexisting spinel. Comparing our experimental results to the Rum Eastern Layered Intrusion, we propose a model for the precipitation of spinel from picrite–troctolite hybrid melt that is compatible with the observed olivine, plagioclase, and clinopyroxene chemistry.ISSN:0010-7999ISSN:1432-096

    Plagioclase-saturated melt hygrothermobarometry and plagioclase-melt equilibria using machine learning

    Get PDF
    Compositions of plagioclase-melt pairs are commonly used to constrain temperatures (T), dissolved water contents (H2O) and pressures (P) of pre-eruptive magma storage and transport. However, previous plagioclase-based thermometers, hygrometers, and barometers can have significant errors, leading to imprecise reconstructions of conditions during plagioclase growth. Here, we explore whether we can refine existing plagioclase-based hygrothermobarometers with either plagioclase-melt or melt-only chemistry (±T/H2O), calibrated using random forest machine learning on experimental petrology data (n = 1,152). We find that both the plagioclase-melt and melt-only models return similar cross-validation root-mean-square errors (RMSEs), as the melt holds most of the P-T-H2O information rather than the plagioclase. T/H2O-dependent melt models have test set RMSEs of 25°C, 0.70 wt.% and 76 MPa for temperature, H2O content and pressure, respectively, while T/H2O-independent models have RMSEs of 38°C, 0.97 wt.% and 91 MPa. The melt thermometer and hygrometer are applicable to a wide range of plagioclase-bearing melts at temperatures between 664 and 1355°C, and with H2O concentrations up to 11.2 wt.%, while the melt barometer is suitable for pressures of ≤500 MPa. An updated plagioclase-melt equilibrium model has also been calibrated, allowing the equilibrium anorthite content to be predicted with an error of 5.8 mol%. The new P-T-H2O-An models were applied to matrix glasses and melt inclusions from the 1980 Mount St Helens (USA) and 2014–2015 Holuhraun (Iceland) eruptions, corroborating previous independent estimates and observations. Models are available at https://github.com/kyra-cutler/Plag-saturated-melt-P-T-H2O-An, enabling assessment of plagioclase-melt equilibrium and characterization of last-equilibrated P-T-H2O conditions of plagioclase-saturated magmas

    The sources of granitic melt in Deep Hot Zones

    Get PDF
    A Deep Hot Zone develops when numerous mafic sills are repeatedly injected at Moho depth or are scattered in the lower crust. The melt generation is numerically modelled for mafic sill emplacement geometries by overaccretion, underaccretion or random emplacement, and for intrusion rates of 2, 5 and 10 mm/yr. After an incubation period, melts are generated by incomplete crystallisation of the mafic magma and by partial melting of the crust. The first melts generated are residual from the mafic magmas that have low solidi due to concentration of H2O in the residual liquids. Once the solidus of the crust is reached, the ratio of crustal partial melt to residual melt increases to a maximum. If wet mafic magma, typical of arc environments, is injected in an amphibolitic crust, the residual melt is dominant over the partial melt, which implies that the generation of I-type granites is dominated by the crystallisation of mafic magma originated from the mantle and not by the partial melting of earlier underplated material. High ratios of crustal partial melt over residual melt are reached when sills are scattered in a metasedimentary crust, allowing the generation of S-type granites. The partial melting of a refractory granulitic crust intruded by dry, high-T mafic magma is limited and subordinate to the production of larger amount of residual melt in the mafic sills. Thus the generation of A-type granites by partial melting of a refractory crust would require a mechanism of selective extraction of the A-type mel

    Vertically extensive and unstable magmatic systems:a unified view of igneous processes

    Get PDF

    Clinopyroxene diversity and magma plumbing system processes in an accreted Pacific ocean island, Panama

    Get PDF
    Characterising equilibrium and disequilibrium crystal-melt processes is critical in determining the extent of magma mixing and crystallization conditions in the roots of volcanoes. However, these processes remain poorly investigated in most Pacific intraplate ocean settings that are difficult to access and study. To help address this issue, we investigated crystallization conditions of clinopyroxene phenocrysts in an accreted Palaeogene oceanic island in Panama. Petrographic and geochemical observations, petrological modelling of major and trace elements, and liquid-mineral multicomponent equilibrium tests were carried out using basalts, picrites, and hawaiites of the transitional tholeiitic shield to alkaline post-shield volcanic stages of the island. Five types of clinopyroxene crystals were identified, including (1) microphenocrysts with micron-scale oscillatory zoning, (2) primitive, yet resorbed picrite-hosted phenocrysts, (3) chemically homogeneous, anhedral crystals found in the remaining basalts, (4) Ti–rich euhedral hawaiite-hosted phenocrysts, and (5) evolved sector-zoned phenocrysts. Liquid-clinopyroxene multicomponent equilibrium tests in combination with textural analysis show that ~ 74% of the studied clinopyroxenes are in possible major element equilibrium with one of the available whole rock magma compositions, of which only 21% are equilibrated with their carrier liquid. To deconvolute clinopyroxene-melt pairings and determine plumbing system conditions, we combine rhyolite-MELTS modelling, geothermobarometry, and major- and trace-element equilibrium evaluations, limiting crystallization conditions to crustal levels (< 23 km depth). No migration of magmatic reservoirs to deeper levels is observed during the shield- to post-shield transition. These results suggest the occurrence of an extensive crystal mush system during the late shield to post-shield volcanic stages of this intraplate volcanic system, with both primitive and evolved crystallization domains sampled during eruptions

    Rapid ascent of rhyolitic magma at Chaitén volcano, Chile

    Get PDF
    International audienceAlthough rhyolite magma has fuelled some of the Earth's largest explosive volcanic eruptions, our understanding of these events is incomplete due to the previous lack of direct observation of these eruptions. On 1 May 2008, Chaitén volcano in Chile erupted rhyolite magma unexpectedly and explosively. Here, petrological and experimental data are presented that indicate that the hydrous rhyolite magma at Chaitén ascended very rapidly from storage depth to near-surface, with velocities of the order of one metre per second
    corecore