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Abstract 
 

We present isothermal (885 °C) phase equilibrium experiments for a rhyodacite from Mount 

St. Helens (USA) at variable total pressure (25 457 MPa) and fluid composition (XH2Ofl  = 

0.6 1.0) under relatively oxidizing conditions (NNO to NNO+3). Run products were 

characterized by SEM, electron microprobe, and SIMS. Experimental phase assemblages and 

phase chemistry are consistent with those of natural samples from Mount St. Helens from the 

last 4,000 years. Our results emphasize the importance of pressure and melt H2O  content in 

controlling phase proportions and compositions, showing how significant textural and 

compositional variability may be generated in the absence of mixing, cooling, or even 

decompression. Rather, variations in the bulk volatile content of magmas, and the potential 

for fluid migration relative to surrounding melts, mean that magmas may take varied 

trajectories through pressure fluid composition space during storage, transport, and eruption. 

We introduce a novel method for projecting isothermal phase equilibria into CO2 H2O  space 

(as conventionally done for melt inclusions) and use this projection to interpret petrological 

data from Mount St Helens dacites. By fitting the experimental data as empirical functions of 

melt water content, we show how different scenarios of isothermal magma degassing (e.g. 

water-saturated ascent, vapor-buffered ascent, vapor fluxing) can have quite different textural 

and chemical consequences. We explore how petrological data might be used to infer 

degassing paths of natural magmas and conclude that melt CO2  content is a much more useful 

parameter in this regard than melt H2O. 

 

 

1 Introduction 
 
Degassing and concomitant crystallization modulate the chemical and physical properties of 

erupting magmas, but direct evidence of the degassing behavior of arc magmas remains 

elusive. Instead petrologists rely on indirect methods to infer degassing processes, including 

petrography, textural analysis, mineral chemistry, melt inclusion analysis and thermodynamic 

modeling. In this paper we use experimental phase equilibria of a rhyodacite composition 

from Mount St. Helens, USA, as a framework for interpreting magma degassing paths. 

 H2O and CO2 are typically the most abundant volatile species in silica-rich arc magmas. 

Although H2O  predominates, water loss from magmas strongly depends on the abundance of 
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CO2, which affects the partial pressures of both components. For this reason, solubility 

relationships and degassing paths are often represented on conventional plots of melt CO2 vs. 

H2O (e.g. Holloway and Blank 1994; Newman and Lowenstern 2002). In the idealized case 

of closed-system decompression, melts exsolve CO2  in preference to H2O  until the late stages 

of degassing, when almost all CO2  has been stripped from the melt. The resulting degassing 

trajectory in CO2 H2O space is strongly curved and runs oblique to isopleths constant 

vapor composition. Alternate degassing scenarios may include open system degassing, 

whereby gas is continuously removed from the melt (Newman and Lowenstern 2002); 

degassing + crystallization, which concentrates H2O in melt and vapor (e.g. Bundy and 

Cashman 2008);  of melt stored at shallow levels by gas released at 

depth (e.g., Blundy et al. 2010), which displaces melt towards more CO2-rich compositions. 

Kinetic effects, related to variable volatile diffusivities through silicate melt (e.g. 

Gonnermann and Manga 2005), may further complicate degassing behavior. The reader is 

referred to Blundy and Cashman (2008) for a more detailed exploration of these scenarios. 

  Petrology paints an increasingly complex picture of degassing behavior in volcanic 

systems. In particular, the H2O  and CO2  contents of melt inclusions rarely describe simple, 

closed-system degassing paths; rather, they define broad arrays suggestive of varied 

trajectories through H2O CO2  space (Blundy et al. 2010). The compositions and textures of 

complexly zoned phenocrysts attest to the role of variable melt water content in the P T t 

evolution of crystallizing magmas (e.g., Rutherford and Devine 2008; Streck et al. 2008; 

Cashman and Blundy 2013). Constraints from diffusion chronometry suggest that such 

variations may occur on eruptive timescales (days to months, e.g. Saunders et al. 2012). It 

follows that crystals can preserve valuable information on the composition, quantity, and 

mobility of fluid in volcanic systems, and their relationship to discrete eruptive events. A key 

question is whether the degassing record from crystal compositions and textures can be 

reconciled with that from melt inclusions.  

 Experimental studies can help link the petrologic record to coupled processes of 

degassing and crystallization. Although many studies have investigated the solubility and 

partitioning of volatiles in magmas of varied composition (as reviewed by Baker and Alletti 

2012), such studies are overwhelmingly focused on crystal-free systems. Phase equilibria 

investigations of crystal-bearing magmas incorporating multi-component fluids are generally 

aimed at replicating static pre-eruptive magma storage conditions (e.g., Blundy and Cashman 

2008; Hammer 2008). Studies emphasizing the co-evolution of melt+fluid±crystals in 

response to degassing of multi-component fluids are rare and typically lack quantitative 
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information on fluid composition (e.g. Mangan and Sisson 2000; Cichy et al. 2011). 

 We present isothermal phase equilibria experiments in pressure fluid composition 

space designed to assess the effect of degassing of binary H2O CO2  fluids on the petrological 

evolution of crystallizing silicic magmas. These experiments emphasize the role of degassing 

path in controlling the compositions and textures of erupted products, showing how 

significant variability in phase assemblages, abundances, and compositions may be generated 

in the absence of magma mixing, cooling or heating, or even decompression. Rather, 

variations in the bulk volatile content of magmas, and the potential for fluid migration 

relative to surrounding melts, are capable of generating a wide range of petrographic 

characteristics. As a case study, we utilize the well-characterized Mount St. Helens (USA) 

volcanic system. Our run temperature (885 °C), pressures (25 457 MPa), and fluid 

compositions (60 100 mol% H2O) are constrained by existing petrologic data, including Fe

Ti oxide thermometry (Blundy et al. 2008), melt inclusion volatile contents (Blundy et al. 

2010; Cashman and Blundy 2013), and phase equilibria constraints on magma storage depths 

(Rutherford et al. 1985; Rutherford and Devine 1988; Gardner et al. 1995b). In this way, our 

run conditions simulate isothermal degassing of magma at depths ranging from the mid-crust 

to the near surface. 

 

2 Experimental Methods 
 
Our starting material is a synthetic equivalent of a natural rhyodacite (dome sample DS-63 of 

Smith and Leeman 1987) from the Sugar Bowl eruptive sequence of Mount St. Helens (1200 

y.b.p.; Mullineaux 1986). This rhyodacite is the most felsic composition erupted at Mount St. 

Helens in the past 4,000 years, with bulk compositions sitting at the intersection of whole 

rock and melt inclusion major element trends (Blundy et al. 2008). As such, these lavas are 

unlikely to have been significantly modified by processes of magma mixing and crystal 

accumulation that have been documented in previous petrologic studies (Gardner et al. 

1995a; Heliker 1995; Berlo et al. 2007; Cashman and Blundy 2013). We take this rhyodacite 

shallow magmatic system, and our experiments (in the sense of 

Pichavant et al. 2007) to simulate the evolution of this melt to produce phenocryst rims and 

groundmass (i.e., the subsystem in local chemical equilibrium on the timescales of processes 

being investigated). Although the Sugar Bowl rhyodacite itself may not have experienced the 

diversity of degassing trajectories simulated in this study, our aim is to make general 
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inferences regarding degassing processes that may be relevant to Mount St. Helens and other 

dacitic arc volcanoes. 

 Volatile-free (SB3) and CO2-bearing (SB4) starting materials for experiments were 

prepared as mechanical mixtures of reagent grade oxides and carbonates. Mixtures were 

repeatedly fused under gas-buffered conditions (NNO+1) to yield homogeneous glass 

powders; see supplementary materials for details. Compositions of SB3 and SB4 are given in 

Table 1. As we aim to investigate processes driven by degassing and decompression, our 

experiments were isothermal, at a temperature (885 °C) chosen to match that of pre-eruptive 

magma storage prior the 1980 1986 eruptions of Mount St. Helens (875 900 °C; Blundy et 

al. 2008).  

 All experiments were run saturated with either a pure-H2O or H2O CO2 fluid. In water-

only experiments (Ptotal  = PH2O), volatile-free starting material was loaded into Au capsules 

along with sufficient water to saturate the charge at run conditions (as estimated following 

Papale et al. 2006). Capsules were sealed shut with a micro-welder, heated briefly (>100 °C), 

and re-weighed to verify the integrity of the weld prior to running. Following each run, 

capsules were weighed again to check for loss or gain of components. The presence of excess 

water was verified visually on piercing, or by weight loss on heating (samples with 

anticipated dissolved water contents > ~6 wt% were not heated to avoid diffusive loss of 

H2O; see Holtz et al. 1992).  Water pressure (PH2O) less than total pressure (Ptotal = PH2O + 

PCO2) was achieved by addition of water to carbonated starting powder (SB4; Table 1); in a 

subset of runs (n = 5), carbon was added to volatile-free starting material as Ag2C2O4, which 

decomposes to Ag + CO2   above 140 °C. The amount of water added was then varied to 

achieve the target H2O CO2  fluid composition (after Papale et al. 2006). Vapor saturation of 

CO2-bearing charges could not always be confirmed by piercing or heating, as the masses of 

excess fluid were small (e.g., Burnham and Jahns 1962). Nevertheless, the amount of CO2  

added exceeds by several thousand ppm that expected to dissolve in the melt at run 

conditions (Newman and Lowenstern 2002; Papale et al. 2006). 

 Experiments at Ptotal   <250 MPa were run in externally-heated cold seal Nimonic 

pressure vessels at the University of Bristol (excepting DSB6, run on an identical apparatus at 

the University of Oregon) with water as the pressurizing medium. Typically, 2-3 charges of 

different fluid composition were loaded simultaneously to minimize inter-run variations in P 

and T. Pressure was monitored on digital transducers or Heise gauges and controlled to 

within 1 MPa of the target value. Temperature was monitored using K-type thermocouples 

accurate to ±3 °C.  Samples were positioned in the furnace hot spot, where thermal gradients 
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were <2-3 °C over the capsule length (<1 cm). At the end of each run, charges were rapidly 

quenched by lowering the magnetic sample holder into the water-

vessel base. An additional six experiments (Ptotal   in internally-heated 

pressure vessels (IHPV) at Leibniz Universität Hannover, pressurized using an Ar H2 gas 

mixture. Temperature was measured using four thermocouples positioned along the 30 mm 

hot zone of the sample holder; gradients were <5 °C across the capsule length. Charges were 

suspended from Pt wire and drop-quenched at the end of each run. Run times ranged from 48 

to 506 hours, depending on pressure and fluid composition.  Chips of quenched run products 

were mounted in resin, ground and polished, and analyzed for major elements and volatiles as 

described in the supplementary materials. 

 The oxygen fugacity of IHPV runs was maintained near the NNO buffer (Table 2) by 

controlling the proportions of Ar and H2 in the pressurizing gas, monitored through use of an 

H2-permeable membrane adjacent to the sample holder (Berndt et al. 2002). The oxygen 

fugacity of cold-seal experiments was not buffered, but several experiments generated co-

existing oxides that indicate fO2  of 2.3 3.4 log units above the NNO buffer (Lepage 2003; 

Table 2). These conditions are more oxidizing than those inferred for the Pine Creek and 

Kalama tephras (NNO+1.3 1.4; Gardner et al. 1995b), which chronologically bracket the 

Sugar Bowl lavas; however, similar conditions have existed among earlier erupted dacites at 

Mount St. Helens (Smith Creek period, NNO+2.2 2.7; Gardner et al. 1995b). We do not 

consider this offset to have major implications for phase stability in our runs, but it should be 

borne in mind when examining phase compositions of mafic minerals. 

  
3 Results 
 
3.1 Run products 
 

Run conditions and phase assemblages of 29 experimental charges are summarized in Table 

2. Runs are isothermal (885 °C), with pressures ranging from 25 to 457 MPa and calculated 

fluid compositions (XH2Ofl, Sec. 3.2) between 0.6 and 1.0. All run products are well-

quenched, bubbly glasses containing crystals of plagioclase, amphibole, pyroxenes, and/or 

Fe Ti oxides. Crystalline phases are homogeneously distributed throughout each charge and 

are typically euhedral to elongate, with the exception of plagioclase, whose habits become 

increasingly skeletal or chain-like at low pressures and low XH2Ofl   (Fig. 1). Phases were 

identified primarily by EPMA and semi-quantitative EDS, with positive identification of 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



	   7 

small or rare phases aided by observations of crystal habit; for example, rhombohedral oxides 

could be readily distinguished from magnetite by their tabular shapes (Fig. 1c). 

 Our starting material is a glass powder, and equilibration of each run proceeded by the 

crystallization et al. 

1992). We have not performed melting experiments to demonstrate reversibility, because the 

small size of crystals would preclude the analysis of crystal rims in such runs. 

However, several lines of evidence attest to the attainment of equilibrium in our sample suite: 

(a) run durations equivalent to (or longer than) equilibration times demonstrated by reversals 

in previous studies of silica-rich magmas at similar conditions (e.g., Gardner et al. 1995b; 

Hammer et al. 2002; Castro and Dingwell 2009); (b) the uniform distribution and size of 

crystalline phases within each charge, suggesting ease of nucleation; and (c) the low residuals 

of mass balance calculations (almost always <0.1; supplementary materials). Mineral melt 

exchange coefficients for plagioclase (KD = (Ca/Na)plag/(Ca/Na)liq) are within the range 

reported in other experimental studies of hydrous silicic melts (2.4 4.4; compared to 3.1 6.9, 

Gardner et al. 1995b; 1.8 3.9, Scaillet and Evans, 1999; 2.0 7.2, Sisson et al. 2005; and 3.0

8.0, Martel 2012) and positively correlated with indices of melt evolution, as expected for 

equilibrium crystallization of plagioclase (e.g., Sisson et al. 2005). Moreover, 70% of runs 

give plagioclase melt thermometry temperatures within 50 °C of known run temperatures, as 

calculated using the equilibrium algorithm of Putirka (2008, equation 24a). KD (= 

(Fe2+/Mg)min/(Fe2+/Mg)liq) of mafic phases are less straightforward indicators of equilibrium 

given their sensitivity to redox state, and Fe3+ melt and minerals are not known 

for most samples. However, KD calculated for two pyroxene-bearing runs in which glasses 

were directly analyzed for Fe2+ and Fe3+ by ANES are consistent with the accepted 

equilibrium value of 0.3 (Putirka 2008). Calculated KD are reported in the supplementary 

materials. 

 

3.2 Volatile concentrations 
 

Dissolved volatiles The dissolved H2O   concentrations of experimental glasses range from 

3.2 9.8 wt% (Table 2). Water contents likely extend to lower values but could not be 

measured in a single low-pressure run (PSB28) due to its high crystallinity; the value 

reported for this sample is a modeled water solubility (Table 2; Papale et al. 2006). SIMS 

measurements agree well with H2O   from EPMA analyses 

(75% agree within uncertainty; see supplementary materials), and the absolute average 
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deviation of the two data sets is 0.49 wt% (better than the propagated precision of by-

difference values).  Scatter is greater at high water contents, where the precision of both 

techniques may be affected by the instability of water-rich rhyolite glasses (e.g., Ihinger et al. 

1994; Devine et al. 1995; Hauri et al. 2002). As expected, dissolved H2O  concentrations show 

a pronounced pressure dependence (Fig. 2a), decreasing, at water-saturated conditions, from 

9.8 wt% to 3.2 wt% between 457 and 50 MPa. The addition of CO2  decreases H2O  fugacity 

(e.g., Blank et al. 1993; Dixon et al. 1995) such that H2O  contents decrease at constant total 

fluid pressure (Ptotal) with increasing CO2   content (Fig. 2c). Dissolved CO2   concentrations 

range from below detection (26 ppm) to 2325 ppm and are highest in mixed fluid runs at P = 

457 MPa (Fig. 2b). CO2  concentrations decrease dramatically with decreasing Ptotal  at high 

pressures. In water-saturated runs, CO2  contents are just above detection limits, indicating 

minimal carbon contamination of starting materials. 

 
Fluid composition Fluid composition is a key intensive variable in our experimental suite. 

Throughout this paper, we report fluid composition as the mole fraction of water, XH2Ofl, in a 

binary H2O CO2   fluid phase, assuming other components (e.g., N2 from trapped air; 

dissolved silicates) contribute negligibly to the total fluid pressure. There are several 

approaches to estimating the fluid composition of experimental run products: the mass ratio 

of exsolved H2O   and CO2   may be measured gravimetrically (e.g., Tamic et al. 2001), 

calculated by mass balance from known bulk and dissolved volatile concentrations (e.g., 

Lesne et al. 2011), or estimated using solubility or partitioning models (e.g., Gardner et al. 

1995b; Hammer et al. 2002). In our runs, the small volume of free fluid did not permit 

accurate determination of XH2Ofl  by gravimetry, while mass balance calculations incorporate 

a large number of variables and associated uncertainties that yield unacceptably large errors 

(often >20% relative). We instead calculate fluid compositions from measured H2O  and CO2  

concentrations using the compositionally-dependent solubility model of Papale et al. (2006). 

This approach yields a self-consistent set of values derived from well-constrained variables: 

run temperature, dissolved volatile concentrations, and measured glass compositions. It also 

encompasses sources of uncertainty that are not easily constrained (e.g., weighing errors or 

adsorption of H and C onto starting powders). Fluid compositions estimated in this way are 

largely indistinguishable from those estimated by mass balance within the relatively large 

error of the latter.  

 Calculated XH2Ofl  are between 0.6 and 1.0 (Table 2). These values rely critically on the 

solubility model used; to justify our choice, Fig. 3 compares known experimental pressures to 
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saturation pressures calculated using Papale et al. (2006) and using VolatileCalc (Newman 

and Lowenstern 2002). Measured H2O and CO2 contents are also compared to isobars and 

vapor isopleths calculated after Papale et al (2006) in Fig. 2c. Although both models tend to 

overestimate known run pressures, the model of Papale et al. (2006) better replicates run 

pressures across the entire investigated pressure range. In contrast, saturation pressures 

calculated using VolatileCalc deviate strongly from known values at pressures >250 MPa. 

Comparison of experimental data with model predictions suggests our approach may 

introduce an additional, systematic uncertainty in calculated fluid compositions (Fig. 2c), but 

this is unlikely to be greater than the error in mass balance calculations.  

 
3.3 Phase relations in P XH2Ofl  space 
 

Isothermal phase relations for the Sugar Bowl rhyodacite depend strongly on pressure and 

fluid composition (Fig. 4). Similar relationships are observed in other experimental studies of 

natural magmatic systems (e.g. Rutherford et al. 1985; Rutherford and Devine 1988; Gardner 

et al. 1995b; Scaillet and Evans 1999; Hammer et al. 2002; Pichavant et al. 2002; Scaillet et 

al. 2008) and underscore the role of water, which has highly pressure-dependent solubility, in 

influencing the stabilities of hydrous and anhydrous minerals (e.g. Tuttle and Bowen 1958; 

Ebadi and Johannes 1991; Holtz et al. 1992). 

 Titanomagnetite is the liquidus phase at our run temperature and is observed in all run 

products (Table 2; Fig. 4). At lower pressures, plagioclase joins the stable assemblage, 

followed by orthopyroxene, except at the most water-rich fluid compositions (XH2Ofl  

where the amphibole-in curve crosses the plagioclase and pyroxene phase boundaries. The 

isothermal saturation pressures of all anhydrous phases increase with decreasing XH2Ofl. In 

contrast, amphibole stability is greatly reduced at lower melt water contents, as reflected by 

the pronounced curvature of the saturation surface in P-XH2Ofl   space. The low-pressure 

bound of the amphibole saturation surface is coincident with melt water contents of 4 wt% 

(Fig. 4), an approximate lower limit of amphibole stability in hydrous melts (Eggler and 

Burnham 1973; Ridolfi and Renzulli 2012). The high-pressure limit of the isothermal 

amphibole stability curve is constrained by the absence of amphibole at 225 MPa and water-

saturated conditions, and for XH2Ofl  <0.7 amphibole is not stable at any pressure. 

 Rhombohedral oxides have irregular stability in our experimental suite, and the two-

oxide stability field is poorly-constrained. This suggests that we are near the saturation 

surface of rhombohedral oxides, in keeping with previous experimental studies of Mount St. 
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Helens dacites that find oxide stability to be strongly dependent on temperature and oxygen 

fugacity (Rutherford et al. 1985; Rutherford and Devine 1988; Gardner et al. 1995b). 

Discrepancies may therefore be attributable to temperature uncertainties, or to a slight 

reduction of fO2  with decreasing water activity, a consequence of the coupling of the imposed 

fH2 to the fH2O and fO2   in the charge (e.g., Scaillet and Evans 1999; 

Sisson et al. 2005). This effect is seen in the calculated oxygen fugacities of run products at 

identical P and T (Table 2), which decrease systematically as XH2Ofl  decreases.  

 A silica phase and apatite are found in a small number of experimental samples. Silica 

occurs as isolated crystals (sample PSB54) and as an anhedral phase that appears to partially 

or wholly infill vesicles (sample PSB28), consistent with the identification of silica 

polymorphs (tridymite and cristobalite) in dome samples from recent eruptions of Mount St. 

Helens (Hoblitt and Harmon 1993; Blundy and Cashman 2001; Pallister et al. 2008). The 

presence of silica at Ptotal  = 150 MPa suggests that low pressure crystallization is not required 

for silica saturation (as posited by Blundy and Cashman 2001), as long as melt H2O  content is 

sufficiently low. Rare skeletal apatite crystals are observed in two low-pressure, water-

saturated runs, and our phase boundary is drawn to reflect this narrow stability field.	  
 Equilibrium experiments identify five major stable phases (plag, amph, opx, magnetite, 

and ilmenite) that are consistent with mineral assemblages observed in previous experimental 

studies of dacitic phase equilibria at Mount St. Helens (Merzbacher and Eggler 1984; 

Rutherford et al. 1985; Rutherford and Devine 1988; Geschwind and Rutherford 1992; 

Rutherford and Hill 1993; Gardner et al. 1995b; Rutherford and Devine 2008). This same 

assemblage is broadly characteristic of dacites erupted at the volcano over the past 4000 

years (Halliday et al. 1983; Mullineaux 1986; Smith and Leeman 1987; Pallister et al. 1992; 

Gardner et al. 1995a), with the exception of cummingtonite, found in the Smith Creek tephras 

(Smith and Leeman 1987; Gardner et al. 1995a) and reproduced in the relatively cool 

(<800°C) experiments of Geschwind and Rutherford (1992). Although trace abundances of 

augite are found in some natural dacites and produced in minor quantities in experiments 

(Merzbacher and Eggler 1984; Rutherford et al. 1985; Rutherford and Devine 1988; 

Rutherford and Devine 2008), augite is absent from both the Sugar Bowl dome rhyodacite 

(Smith, 1984; Smith and Leeman, 1987) and our experiments. 

 

3.4 Crystallinity and phase proportions 
 

Phase abundances have been calculated from measured bulk, glass, and mineral compositions 
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(on an anhydrous basis) using least-squares regression (supplementary materials). Residuals 

of mass balance calculations are generally low ( 2  0.05 in all but three runs), and the 

standard error on regression coefficients is always <2 wt% absolute, suggesting that 

analytical sodium loss is minimal even in very hydrous glasses. For a single sample lacking 

glass analyses, we have estimated phase proportions by point counting representative BSE 

images (see supplementary materials for details). We have also point-counted two near-

liquidus samples for which mass balance calculations give low crystal fractions inconsistent 

with visual estimates (probably a result of large relative errors in mass balance estimates at 

very low crystal contents). 

 Calculated phase abundances illustrate several key aspects of the crystallizing system. 

First, as expected, total crystallinity increases dramatically with decreasing pressure (at 

constant temperature and XH2Ofl  ; Fig. 5a) and with decreasing XH2Ofl  (at constant pressure; 

Fig. 5b). Second, plagioclase is by far the most abundant crystallizing phase in our sample 

suite, except at high pressures, where crystallinities are low and orthopyroxene abundance 

equals or exceeds that of plagioclase. This shift in relative abundances could indicate the 

convergence or crossing of the plagioclase and orthopyroxene liquidi within our phase 

diagram (as observed in the experiments of Merzbacher and Eggler 1984 and Rutherford et 

al. 1985), although the location of this transition cannot be resolved from the observed phase 

assemblages (Table 2). Plagioclase crystallinities in experimental run products range from 

trace quantities near the liquidus to 51 wt% at the lowest Ptotal  investigated; the mass fractions 

of all other mineral phases remain comparatively low (<5 wt%). The predominance of 

plagioclase across much of the investigated parameter space is consistent with its ubiquity as 

a phenocryst and groundmass phase in natural dacites (e.g., Smith and Leeman 1987; 

Gardner et al. 1995a). 

 
3.5 Phase compositions 
 

Glass compositions Major element compositions of experimental glasses (supplementary 

materials) range from rhyodacitic to rhyolitic and become increasingly evolved (higher SiO2 

and K2O, lower Al2O3, CaO, FeOT, and MgO) at lower pressures and water-poor fluid 

compositions, reflecting progressive, isothermal crystallization with decreasing pressure (at 

constant fluid composition) and/or decreasing XH2Ofl   (at constant pressure). Experimental 

glass compositions overlap with those of natural groundmass and melt inclusion glasses from 

the 1980 1986 and 2004 2008 eruptions of Mount St. Helens (Fig. 6) and encompass nearly 
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the entire range of glass SiO2 contents generated during this activity (Blundy et al. 2008). 

These data lend support to our choice of starting composition and emphasize the ability of 

polybaric, volatile-driven crystallization, in the absence of any cooling, to generate much of 

the compositional diversity observed in silica-rich volcanic glasses (e.g. Cashman 1992; 

Blundy and Cashman 2001). Slight offsets between the Al2O3 and CaO contents of 

experimental and natural glasses probably reflect minor differences in bulk composition. 

 A pronounced feature of Fig. 6 is the offset between the Na2O contents of natural 

versus experimental glasses. Experimental glasses extend smoothly from the whole rock 

trend before decreasing at higher silica contents, while natural glasses show a pronounced 

inflection to the whole rock data. This mismatch is unlikely to be an analytical effect (Sec. 

3.4). Blundy et al. (2008) have previously attributed the inflection observed in natural 

samples to the onset of volatile-saturated crystallization, during which Na partitions 

preferentially into vapor. It is possible that our experiments became vapor saturated at less 

evolved (lower SiO2) compositions than the natural glasses (perhaps due to higher bulk water 

contents in experiments compared to the natural system), preventing melt Na contents from 

rising to values seen in erupted products. Higher experimental bulk water contents would 

lead to more Na2O being sequestered by the vapor phase throughout the crystallization 

interval; in natural magmas, exsolved vapor fractions during crystallization would be 

comparatively low. In this way, volatile elements (e.g., Na, K) have the potential to provide a 

useful marker of the presence and abundance of vapor in a magmatic system.  

 
Mineral compositions Experimentally-generated plagioclase compositions (mol% anorthite) 

range from An52 near the plagioclase liquidus to An32 (supplementary materials); 

compositions may extend to more albitic values but could not be analyzed in one low-

pressure sample. Fig. 7a compares measured An contents to published plagioclase 

compositions for natural Mount St. Helens dacites erupted over the past 4000 years, which 

display a remarkably broad compositional range (An82 An17; Smith 1984; Smith and Leeman 

1987; Cashman 1992; Gardner et al. 1995a; Cooper and Reid 2003; Berlo et al. 2007; Streck 

et al. 2008). Our experimental plagioclase fall at the sodic end of this range and are 

compositionally equivalent to those found in the Sugar Bowl lavas (An50 An32; Smith 1984; 

Smith and Leeman 1987; Berlo et al. 2007). Experimental plagioclase compositions also 

overlap with those of microphenocrysts and phenocryst rims from the 1980 1986 and 2004

2008 eruptive episodes (An54 An30; Cashman 1992; Streck et al. 2008). Most authors 

interpret highly calcic values (>An60) as xenocrystic or antecrystic cores; the more limited 
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compositional range (~An50 An30) is probably typical of plagioclase grown from dacitic 

melts. While most compositions fall close to the An-Ab binary, a small increase in the 

orthoclase component is observed at An <40 mol% (up to Or3; Fig. 7a). 

 Although temperature exerts a primary control on plagioclase composition (Rutherford 

et al. 1985; Gardner et al. 1995b; Cashman and Blundy 2013), the subsidiary effect of melt 

water content is also important, and numerous experimental studies have shown that 

plagioclase becomes more albitic as PH2O  decreases at constant temperature (Rutherford et al. 

1985; Rutherford and Devine 1988; Gardner et al. 1995b; Hammer et al. 2002; Couch et al. 

2003; Moore 2008; Brugger and Hammer 2010; Martel 2012). This effect is illustrated in Fig. 

7 for subsets of water-saturated (Fig. 7b) and isobaric runs (Fig. 7c), which trend towards 

more sodic compositions with decreasing pressure and XH2Ofl, respectively. The magnitude 

of the isothermal pressure dependence of anorthite content can be described by a simple 

linear fit to the water-saturated dataset, which yields a decrease of 5 mol% An for every 50 

MPa drop in Ptotal (a comparable change through isobaric cooling requires a drop of ~14°C; 

Cashman and Blundy 2013). A similar fit to the isobaric data suggests that XH2Ofl must 

decrease by 0.1 to produce the same change in plagioclase composition at 200 MPa.  These 

fits are approximate, as our data do not extend to low pressures and water-poor fluid 

compositions, where An contents should approach the solidus composition. 

 Fe Ti oxides occur as both cubic and rhombohedral varieties in our experiments. 

Rhombohedral oxides are found in just ten runs, with compositions falling on the Ti-poor 

side of the ilmenite hematite solid solution (Ilm24 Ilm44, calculated after Stormer 1983; 

supplementary materials). Where possible, the oxygen fugacities of run products have been 

calculated from co-existing oxides using ILMAT (Lepage 2003); these calculations yield 

relatively oxidizing fO2  of NNO+2.3 3.4 (Table 2). The Usp contents of titanomagnetite span 

a wide range (Usp4 Usp45; supplementary materials) and are strongly clustered, such that the 

TiO2 contents of cubic and rhombohedral oxides in our sample suite overlap. Where only one 

oxide is present, it is assumed to be ülvospinel, consistent with inferences based on crystal 

habit. 

 In contrast to plagioclase, the compositions of mafic phases (amphibole, 

orthopyroxene, and Fe Ti oxides; see supplementary materials) show no clear variation with 

water content in our runs. Amphibole crystals could be analyzed in only three charges, and no 

systematics emerge from this small dataset. Orthopyroxenes span a range of endmember 

compositions (En56 En84), with wollastonite contents of 1 2 mol% in all but two high-

pressure runs (Wo3 Wo4, perhaps due to low plagioclase abundance in these charges). 
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Orthopyroxene compositions overlap with those for natural Mount St. Helens dacites 

spanning the last 13,000 years of activity (En52 En73; Smith 1984; Smith and Leeman 1987; 

Saunders et al. 2012) but extend to higher En and Mg# (Fig. 8a). The range of pyroxene 

compositions cannot be attributed to temperature in our runs, although temperature may be 

partly responsible for compositional variability in natural pyroxenes. A more likely cause of 

the compositional shifts observed in experiments are variations in fO2  (e.g. Rutherford and 

Devine 1988; Scaillet and Evans 1999), which affect the amount of ferrous iron in the melt 

available for incorporation into orthopyroxene. Orthopyroxene compositions are broadly 

correlated with the oxygen fugacities reported in Table 2 (Fig. 8b) and with the TiO2 content 

of co-existing magnetite.  

 To corroborate oxygen fugacities estimated from oxide compositions, the glassiest run 

products (n = 8) were analyzed for Fe2+ and Fe3+ by  (Table 2; see supplementary 

materials for analytical methods). For charges with XH2Ofl    1, values of 

from  (+0.9 to +2.7) overlap with those estimated from oxide compositions (+2.3 to 

+3.4). CSPV runs span the range of measured fO2  values, while IHPV runs fall at the low end 

of this range, reflecting the fact that IHPV runs were maintained at more reducing conditions 

via H2 in the pressurizing gas. Given the abundance of plagioclase in our experimental 

system, variations in run fO2  should not strongly influence the systematics of other variables 

considered here (e.g. crystallinities, plagioclase compositions, and glass compositions, with 

the exception of FeOT).  
 

4 Discussion 
 

Our results reinforce the findings of many previous experimental investigations that have 

shown crystal melt equilibria to be strongly dependent on dissolved water content. 

Furthermore, the isothermal and isochemical nature of our experiments has allowed us to 

demonstrate how changes in melt H2O  concentration, driven solely by changes in pressure 

and fluid composition, are capable of generating rocks with a wide range of petrographic and 

petrologic characteristics. In the case of the Sugar Bowl rhyodacite, this range encompasses 

much of the compositional diversity observed in groundmass ± microlites ± crystal rims in 

the felsic erupted products of Mount St. Helens. This observation is important, emphasizing 

that mixing of magmas of significantly different compositions and/or temperatures is not 

required to explain the range of textural and compositional variability found in silicic arc 

magmas (although such mixing certainly occurs; e.g., Gardner et al. 1995a; Heliker 1995; 
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Berlo et al. 2007; Cashman and Blundy 2013). Rather, variations in the bulk volatile content 

of magmas, and the potential for fluid migration relative to surrounding melts, mean that 

magmas may take varied trajectories through pressure fluid composition space during 

storage, transport, and eruption. Our experiments afford a general framework for 

understanding the petrological consequences of these different ascent and degassing 

trajectories. In the following discussion we emphasize ways of representing experimentally-

determined phase equilibria to foster interpretation of natural volcanic rocks. 

 Our approach employs isothermal phase relations; in natural magmatic systems, 

however, temperature may vary both within and between eruptions (as documented at Mount 

St. Helens and attributed to processes such as mixing, latent heating, or protracted shallow 

storage; Blundy and Cashman 2005; Blundy et al. 2006; Blundy et al. 2008; Cashman and 

Blundy 2013). Phase relations are demonstrably sensitive to such variations (e.g., Rutherford 

et al. 1985; Rutherford and Devine 1988; Rutherford et al. 2008). Although considering the 

isothermal case allows us to isolate the importance of degassing processes, our approach 

could be augmented by extending the current experiments into temperature space.  Kinetic 

effects may also impact on the evolution of crystal textures and compositions and are 

considered in a companion study (Riker et al. in review). 

 Several methods of portraying isothermal phase relations have been employed in the 

petrologic literature. The most common approach is to present phase relations in pressure  

fluid composition space, as we have done above (Gardner et al. 1995b; Hammer and 

Rutherford 2002; Scaillet et al. 2008; Blundy et al. 2010). This approach has its limitations; 

frequently only bulk proportions of volatile components are reported, but these may deviate 

strongly from equilibrium fluid compositions at low fluid fractions. Fluid compositions are 

rarely directly measured or calculated by mass balance; when they are, uncertainties are 

typically large (>20% relative; e.g. Lesne et al. 2011). Integration of petrologic data from 

natural samples with those from experiments further requires independent knowledge of P 

and/or XH2Ofl. An alternative approach is to construct phase diagrams using melt water 

content, rather than fluid composition, as an independent variable (P H2O  diagrams, e.g. Di 

Carlo et al. 2006; Pichavant et al. 2009; or more commonly T H2O  diagrams, e.g. Holtz et al. 

2005; Botcharnikov et al. 2008). Water contents are often precisely known, thereby linking 

phase relations to a parameter that can be measured in erupted products. However, these 

projections tend to obscure the presence of CO2   in the magmatic system; as such, they 

provide limited information on degassing trajectories. Here we consider a novel method of 

projecting phase relations and related information onto CO2 H2O  diagrams, more commonly 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



	   16 

used to portray melt inclusion data and modeled melt vapor equilibria (e.g., Newman and 

Lowenstern 2002). As we will show, this type of projection enables the integration of 

petrologic data for magmatic processes that are more isothermal than isobaric. In this way, 

near-isothermal degassing in crystallizing magmas. 

 

4.1 Modeling crystallization in CO2 H2O  space 
 

At fixed temperature and bulk composition, a degassing magma will take a path through 

CO2 H2O  space that depends on the abundance, quantity, and mobility of fluids within the 

volcanic system and the extent to which equilibrium between melt, crystals, and vapor is 

maintained. We can explore the equilibrium case using a schematic CO2 H2O  diagram, onto 

which we have projected our experimental phase boundaries as defined by measured glass 

volatile contents (Fig. 9). Additionally we show four endmember degassing trajectories 

(paths A D in Fig. 9), calculated for our experimental composition after Papale et al. (2006). 

A simple linear correction has been applied to modeled saturation pressures to account for the 

offset with known run pressures (Pmodel = 1.20 × Pexperiment, r2 = 0.93; Fig. 3a). 

 Each arrow in Fig. 9 is an isothermal degassing path capable of driving crystallization 

via melt dehydration. With the exception of the water-saturated case, all of these paths pass 

through the pressure (200 MPa) and assemblage (melt + vapor + oxides + plagioclase + 

amphibole + orthopyroxene) inferred for the top of the pre-1980 magma storage region. As 

such they represent plausible degassing scenarios capable of generating recent erupted 

products of Mount St. Helens. Path A shows an idealized, water-saturated degassing 

trajectory, whereby magma ascends in equilibrium with a pure-H2O fluid, as commonly 

simulated in models and experiments. A more geologically plausible scenario is represented 

by Path B, a conventional closed-system degassing path (modeled for a nominal Mount St. 

Helens melt inclusion; see Fig. 9), in which fluid exsolved during ascent remains in 

equilibrium with surrounding melt. The strongly curved shape of this path reflects the low 

solubility of CO2   compared to H2O, assuming no excess fluid is present at the onset of 

decompression. If instead excess fluid is abundant, it may buffer the melt towards more CO2-

rich compositions (e.g., Rust et al. 2004; Blundy et al. 2010) yielding, in the extreme case of 

infinite vapor, vapor-  along an isopleth of constant XH2Ofl   (Path C,  

XH2Ofl  = 0.8). Finally, Path D considers an initially CO2-poor magma equilibrated with an 

increasingly CO2-rich fluid (perhaps supplied from the deeper magmatic system) at a 
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constant pressure of 200 MPa. In this case, melt and gas exchange volatiles in a process 

et al. 2008; 

Blundy et al. 2010); as XH2Ofl decreases, the dissolved water content of the melt decreases in 

tandem, such that gas is released.  

 Fig. 9 makes clear that magmas degassing according to these endmember scenarios will 

traverse different regions of phase stability. As such, they may be expected to record distinct 

petrologic signatures, reflected not only in phase assemblages, but also phase proportions, 

phase compositions, and crystallization sequences. What we would like to know is how these 

parameters vary along each degassing path, and how we might use this information to 

interpret processes of coupled degassing and crystallization in natural volcanic rocks. 

 In order to link our experimental data to the petrologic attributes of the Sugar Bowl 

rhyodacite, we need to quantify key parameters in terms of changing intensive variables. Fig. 

10a shows the strong correlation between total crystallinity and measured melt water content, 

in keeping with the relationships described in Sec. 3.4. This correlation can be used to 

parameterize crystallinity as a hyperbolic1 function of dissolved H2O  concentration: 

 

Crystallinity = 32.1  9.66  [sinh (0.783 × H2O    3.36)] (r2 = 0.87, aad = 4.2)   (3) 

 

where crystallinity and H2O  are in wt% and aad is the average absolute deviation of data 

from model predictions. To extend our parameterization to the solidus, we have forced fits 

through experimentally-determined solidus water contents for the Qz Ab Or H2O CO2  

system at XH2Ofl = 0 1 (Ebadi and Johannes 1991). The water content of a single low-

pressure run that could not be measured is constrained from the volatile-by-difference 

contents of long-duration (i.e. equilibrium) decompression experiments at the same terminal 

pressure (Riker et al. in review). 

 The same approach may be extended to individual phases and major melt components 

whose abundances depend to varying degrees on H2O  content, or on crystal melt equilibria, 

themselves strongly controlled by H2O  content (Fig. 10). Regression of experimental data 

yields the following relations for mineral abundances and melt composition: 

 

Plagioclase (wt%) = 32.6 + 14.3 [sinh (  0.520 × H2O  + 1.96)] (r2 = 0.84, aad = 4.0)  (4) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 We have used hyperbolic functions as they better describe the tendency of the experimental 
data to asymptote at high or low values without the arbitrary inflexion point that bedevils 
more commonly-used third-order polynomial fits. 
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Orthopyroxene (wt%) = 1.33 + 1.22 [sinh (  0.641 × H2O  + 3.00)] (r2 = 0.74, aad = 0.6) (5) 

 

Fe-Ti oxides (wt%) = 1.09 + 0.99 [tanh (  1.43 × H2O  + 9.19)] (r2 = 0.56, aad = 0.5)  (6) 

 

SiO2 in melt (wt%) = 73.6  4.70 [tanh (  0.643 × H2O  + 3.60)] (r2 = 0.83, aad = 1.0)  (7) 

 

Amphibole modes are low (<1.5 wt%, often trace) with large relative errors (supplementary 

materials), and for simplicity, we assume a constant amphibole abundance of 1 wt% within 

the amphibole stability field (and 0 wt% outside) in the illustrations that follow. 
 Plagioclase compositions are highly dependent on water concentrations (Sec 3.5). In 

our run products, however, anorthite content is more closely correlated with sample 

crystallinity (Fig. 10b), a consequence of the associated effect of melt composition: 

 

An (mol%) = 43.7 + 18.0 [tanh ( 0.0293 × crystallinity    0.555)] (r2 = 0.94, a.a.d = 1.1)  (8) 

 

where crystallinity is in wt%. Here we infer the solidus plagioclase composition (An26) from 

the normative anorthite and albite contents of the bulk starting material. Equation 5 is used 

along with equation 4 to recast anorthite content in terms of dissolved water concentration. 

Similar expressions for mafic mineral compositions are not easily derived due to variations in 

run fO2, and we do not consider them here. 
 Our parameterizations of the experimental data enable us to express key petrologic 

variables as functions of dissolved water content. Along with Fig. 9, these relationships 

constitute a simple, empirical model for describing the isothermal magmatic evolution of the 

Sugar Bowl rhyodacite with respect to changing melt H2O   and CO2   concentrations. From 

these data, we may specify the attributes of co-evolving melt, vapor, and crystals at any point 

within our experimental parameter space. 

 

4.2 Interpreting degassing paths in crystallizing magmas 
 

For each of the degassing scenarios outlined above we can use our model to show how phase 

assemblages, compositions and abundances, and crystallization sequences vary during 

progressive isothermal degassing. This information is summarized in Figures 11a d, which 

display phase proportions and equilibrium plagioclase compositions at discrete points along 
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each degassing path. Figures 11e h additionally show how melt CO2   and SiO2 content, 

plagioclase composition, and total crystallinity vary as a function of total pressures 300 

MPa. 
 

Water-saturated ascent (Scenario A) During water-saturated ascent, only melt + minor oxides 

are stable at the onset of decompression (300 MPa, Fig. 11a). As pressure and melt water 

content decrease, first amphibole, then plagioclase begins to crystallize. The modeled 

plagioclase liquidus composition, An53, is in good agreement with the most calcic 

groundmass crystals found in products of recent eruptions (An54, Cashman 1992; Streck et al. 

2008) and with calcic phenocrysts from the Sugar Bowl dome (An50, Smith 1985; Smith and 

Leeman 1987). Below 200 MPa, orthopyroxene and trace apatite join the crystallizing 

assemblage; amphibole is no longer stable by 100 MPa and begins to break down. The 

initially crystal-free melt now contains 30 wt% crystals, dominated by plagioclase (An38) 

with minor opx, oxides, and resorbing (or relict) amphibole. The melt continues to crystallize 

increasingly sodic feldspar during further decompression, and total crystallinity doubles to 61 

wt% by 25 MPa. The melt becomes silica-saturated and, if crystallization proceeds at 

equilibrium, intersects the solidus at still lower pressures and water contents (in practice, this 

may be difficult to achieve as continued crystallization arrests further ascent). The 

equilibrium crystallization (+) sequence is: + amphibole, + plagioclase, + apatite,+ 

orthopyroxene, followed by breakdown  ( ) of amphibole and apatite, and finally silica 

saturation.   

 

Closed-system degassing (Scenario B) Closed-system degassing of H2O CO2-saturated 

magma differs substantially from the pure-H2O  case (Fig. 11b). Here the vapor saturation 

pressure of 300 MPa is determined by our initial melt composition (5.3 wt% H2O  and 1282 

ppm CO2, after Blundy et al. 2010), whereupon the magma contains 25 wt% plagioclase, 

orthopyroxene, and oxide crystals; equilibrium plagioclase is considerably more albitic than 

in the water-saturated system (An41 versus An53). Amphibole only begins to crystallize on 

decompression to 200 MPa, by which pressure ~50% CO2  has exsolved 

(from 1280 to 560 ppm). Significantly, negligible crystallization takes place over this 

pressure interval, and plagioclase compositions remain nearly constant, as does melt water 

content. Noticeable changes in phase proportions and compositions only occur at P <100 

MPa (H2O  <4.3 wt%, CO2  <60 ppm), where the closed-system degassing path parallels that 

of water-saturated ascent. The magma grazes the apatite stability field before amphibole 
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begins to breakdown (110 MPa), followed by apatite resorption (80 MPa) and silica 

saturation (25 MPa). Although the late crystallization sequence is identical to the water-

saturated scenario (  amphibole,  apatite, + silica), the early crystallization sequence is 

distinct (plagioclase/orthopyroxene, + amphibole, + apatite). 

 Two key differences between the water-saturated and closed-system scenarios are (a) 

the sequence of crystallization, and (b) the pressure range over which crystallization occurs. 

In the first instance, the early appearance of amphibole indicates the presence of water-rich 

fluids at depth (XH2Ofl  >0.9). These distinctions may be more pronounced in less evolved 

compositions or at lower temperatures, where the amphibole stability field is larger (e.g., 

Rutherford et al. 1985; Rutherford and Devine 1988; Gardner et al. 1995b). Fig. 12 shows 

that closed-system degassing is ineffective at driving isothermal crystallization in the 300

100 MPa pressure interval, while 30% crystallization of the same magma occurs over this 

interval under water-saturated conditions. Although both of these magmas will eventually 

achieve high crystallinities ( 60 wt% by 25 MPa), they will experience considerably 

different P crystallinity paths en route (Fig. 11h), with implications for the depth evolution of 

magma properties (e.g., density, viscosity, and buoyancy). 

 

Vapor-buffered ascent (Scenario C) Vapor-buffered ascent at XH2Ofl = 0.8 follows a 

trajectory broadly similar to water-saturated decompression, in that crystallization proceeds 

continuously along the degassing path (Fig. 11c). Crystallization of both plagioclase and 

orthopyroxene begins at higher pressure than in the pure-water system (350 versus 220 MPa), 

and the melt contains 7 wt% crystals at the onset of decompression from 300 MPa. Because 

the melt is buffered to higher CO2  contents at all pressures, crystallinity is always higher than 

during water-saturated ascent; this offset is greatest at high pressures. In contrast to closed-

system degassing, H2O  and CO2  decrease in tandem, yielding increasingly albitic plagioclase 

throughout the decompression interval. Anorthite contents decrease from An50 at 300 MPa, to 

An41 at 200 MPa, to An35 at 100 MPa. As above, amphibole follows plagioclase and 

orthopyroxene in the crystallization sequence and is stable over a relatively narrow range of 

pressures (220 130 MPa) compared to the water-saturated case. Vapor-buffered magma 

encounters silica saturation at higher pressures (45 MPa) than in the preceding examples. The 

crystallization sequence is the same as during closed-system degassing, except that apatite is 

not stable anywhere along this degassing path. This demonstrates an important feature of 

vapor-buffered ascent: the phase assemblage at any given pressure is sensitive to the 

composition of the buffering fluid. A magma buffered by more CO2-rich vapor may only 
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graze the amphibole stability field (e.g., XH2Ofl  = 0.75), or may pass entirely outside of it 

(XH2Ofl   = 0.70). Fluid composition also determines the silica saturation pressure during 

isothermal equilibrium crystallization. 

 

Isobaric vapor fluxing (Scenario D) Our final example considers fluxing of initially CO2-free 

magma (XH2Ofl  ~1.0) by CO2-rich vapor (XH2Ofl  ~0.6) at an arbitrary pressure of 200 MPa 

(Fig. 11d). Initially, the system is saturated with plagioclase + amphibole + apatite + Fe Ti 

oxides; orthopyroxene begins to crystallize soon after the onset of fluxing, joining the 

assemblage where the isobar intersects the phase boundary (XH2Ofl   Fig. 9). 

Continued fluxing leads to destabilization of amphibole (XH2Ofl   lly, to 

silica saturation (XH2Ofl   ) at significantly higher pressure than in any of the scenarios 

described above. Both crystallinity and plagioclase composition evolve steadily as melt water 

content decreases. Although the magnitudes of these changes are subdued relative to 

preceding scenarios, they are significant: anorthite content decreases by 12 mol% (An49 to 

An37) and total crystallinity increases three-fold (10 to 32 wt%) during fluxing from XH2Ofl  = 

1.0 to 0.6. Importantly in this case all of the observed changes occur at constant temperature 

and pressure, and melt CO2   content increases (while total dissolved volatile content 

decreases) during crystallization (Fig. 11e). The crystallization sequence is 

plagioclase/amphibole/apatite,  apatite, + orthopyroxene,  amphibole, + silica. 

 The intersection of phase boundaries and vapor isopleths gives rise to an interesting 

feature of our crystallization model: an apparent maximum in the capacity of vapor fluxing to 

drive crystallization of a melt (he This is illustrated in Fig. 12, 

which plots equilibrium crystallinity versus pressure, contoured for fluid composition; the 

offset between contours represents the amount of crystallization driven by re-equilibration 

with a vapor of specified composition. Offsets show maxima near 200 MPa that are a simple 

consequence of phase equilibria (Fig. 12 inset): at low pressures, isopleths are closely spaced 

relative to crystallinity contours, and a large change in vapor composition results in minimal 

crystallization. A similar effect is observed at higher pressures, but for different reasons; 

above the plagioclase liquidus, CO2-rich vapor compositions are required to drive substantial 

crystallization of plagioclase ± orthopyroxene. This effect is exacerbated by the steepening of 

isobars with increasing pressure (e.g. Figs. 2 and 10; Papale et al. 2006).  

 Fig. 12 indicates that fluxing of a CO2-bearing fluid, if it occurs, has a pressure or depth 

of maximum efficiency where a modest change in fluid composition is likely to impose a 

measurable petrologic signature (200 250 MPa for the Sugar Bowl rhyodacite). Interestingly, 
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this same pressure range corresponds to that of an inferred upper crustal storage region 

existing prior to and during the 1980 1986 eruptions of Mount St. Helens (220 320 MPa), as 

indicated by a combination of geophysical (Scandone and Malone, 1985; Lees 1992; Moran, 

1994), petrologic (Blundy and Cashman, 2001; Cashman and McConnell, 2005; Blundy et al. 

2008), and experimental (Rutherford et al. 1985; Rutherford and Devine 1988; Gardner et al. 

1995b) constraints. The coincidence of inferred storage pressures with those of maximum 

fluxing efficiency suggests that vapor mobility may have played an important role in 

modulating the physical and chemical properties of magmas erupted during this period, 

perhaps encouraging magmas to stall by increasing their bulk viscosity. If gas fluxing was 

enhanced by the overburden release accompanying Plinian eruption (as suggested by an 

increase in deep seismicity and non-eruptive CO2   emissions in the weeks and months 

following the May 18th climactic eruption; Weaver et al. 1981; Scandone and Malone 1985; 

Harris and Rose 1996), this phenomenon may ultimately have contributed to self-sealing of 

the chamber and the transition to effusive behavior. 

 

4.3 Application to natural datasets 
 

Our model illustrates how phase equilibria constraints can facilitate the integration of 

petrologic data to interpret isothermal magmatic processes (i.e. degassing) operating beneath 

arc volcanoes. Experiments identify several generic features of the Sugar Bowl rhyodacite 

system that are sensitive indicators of degassing path. These include the crystallization 

sequence, which differs in each of the examples discussed above, and, to a lesser extent, 

shifting proportions of mafic phases (e.g. opx), which may be recorded in melt inclusion and 

groundmass glass compositions. The latter may be diagnostic in systems with higher 

proportions of amphibole and/or orthopyroxene. A key observation arising from our 

illustrations, however, is that water concentrations alone provide limited information on 

processes of coupled degassing and crystallization, because isothermal phase equilibria are so 

strongly controlled by melt H2O  content (e.g., Fig. 10). For example, isothermal H2O   loss 

under polybaric (decompression) and isobaric (gas fluxing) conditions may yield 

indistinguishable relationships between H2O  concentrations and geochemical tracers of melt 

crystallinity (e.g., glass SiO2 and K2O contents; Blundy and Cashman 2005), though the 

processes driving crystallization in these cases are fundamentally different. From this 

perspective, melt CO2  concentrations are considerably more useful. Figs. 11b d show that 

crystallinity CO2   and An CO2   relationships are sensitive to vapor composition and 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



	   23 

abundance and have potential as tracers of magmatic degassing. Although in practice it is 

difficult to match a melt inclusion of known CO2  content to host plagioclase of known An 

content (Cashman and Blundy 2013), alternative indices of melt evolution, such as highly-

incompatible trace elements (e.g., Rb, U), or trace elements with compositionally-dependent 

partition coefficients in plagioclase (e.g., Sr, Ba), could provide a more direct means of 

assessing these trends (e.g., Wallace et al. 1999; Roberge et al. 2013). 

 Our model may also guide interpretation of melt inclusion datasets where both CO2  and 

H2O  concentrations are known. At equilibrium, for example, inclusion compositions should 

plot within the stability field of the erupted assemblage (Figs. 9a b), as is the case for most 

melt inclusions from the May 18th, 1980, Plinian eruption (Blundy et al. 2010). This 

observation is consistent with the absence of amphibole breakdown rims in pyroclasts from 

these deposits (Rutherford and Hill 1993). It also provides corroborating evidence that 

Plinian magma ascended rapidly from high pressure, without time for significant re-

equilibration. Many melt inclusions from post-May 18th eruptions plot within the silica 

stability field, in keeping with the presence of crystobalite and/or tridymite in the groundmass 

of samples from the 1980 1986 eruptions (Hoblitt and Harmon 1993; Blundy and Cashman 

2001; Cashman and McConnell 2005; Pallister et al. 2008), for which the Sugar Bowl 

composition is a proxy.  In contrast, originally water-rich inclusions in slowly ascending 

magmas, or magmas that stall following rapid ascent, may lose H2O  via diffusion through the 

host crystal walls (Portnyagin et al. 2008; Gaetani et al. 2012; Lloyd et al. 2013) or by 

continued communication with the melt during progressive degassing (Blundy and Cashman 

2005; Humphreys et al. 2008). Such open-system behavior is suggested by inclusion 

compositions plotting below the solidus in Fig. 9b. Likewise, amphibole-hosted melt 

inclusions with vapor compositions plotting outside the amphibole stability field give 

compelling evidence of open-system behavior. Where volatile concentrations are suggestive 

of vapor fluxing (e.g., Rust et al. 2004; Johnson et al. 2008; Blundy et al. 2010), projections 

of the type in Fig. 9 can further constrain the nature of petrologic adjustments expected to 

accompany the inferred shift in fluid composition. These adjustments may be diagnostic; for 

example, a CO2-rich, silica-saturated magma with textural evidence of amphibole breakdown 

would be indicative of high-pressure vapor fluxing (Fig. 9). 

 Degassing and crystallization are tandem processes in volcanic systems that together 

modulate the physico-chemical properties of magmas. Our experimental results provide a 

new framework for interpreting degassing behavior, as recorded in the compositions and 

textures of crystal-bearing volcanic rocks. We conclude that projecting phase equilibria into 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



	   24 

CO2 H2O  space is a useful tool for integrating experimental and natural datasets. Although 

the melt inclusion record is complex, our approach shows how phase equilibria constraints 

may be used to corroborate patterns in melt inclusion data, assess the extent of equilibrium 

(or disequilibrium) during degassing-driven crystallization, and identify petrologic features 

diagnostic of degassing style.  
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Figure Captions 
 

Fig. 1 Representative back-scattered electron (BSE) images of experimental run products. (a) 

Experiment PSB26 (175 MPa, XH2Ofl  = 0.99), containing a typical phase assemblage of melt, 

vesicles (vesc), plagioclase (plag), amphibole (amph), and Fe-Ti oxides (ox). (b) Plagioclase, 

orthopyroxene, and Fe-Ti oxides in sample PSB33 (50 MPa, XH2Ofl  = 0.92). Note the change 

in plagioclase size and habit relative to (a), reflecting the lower melt water content of this run. 

(c) Coexisting cubic (magn) and rhombohedral (ilm) oxides in sample PSB50 (200 MPa, 

XH2Ofl   = 0.81). Although scarce, rhombohedral oxides can be readily identified by their 

tabular habits. 

 

Fig. 2 Concentrations of dissolved H2O  and CO2  in experimental glasses. (a) H2O  versus total 

pressure in runs saturated with pure H2O. (b) CO2  versus total pressure in runs saturated with 

a mixed H2O CO2  vapor. Spread of CO2  contents at constant pressure reflects variable fluid 

compositions. The solubilities of both species are strongly pressure-dependent. (c) CO2  

versus H2O   for runs at different Ptotal, illustrating the interdependence of H2O   and CO2  

solubilities. For clarity, data at intermediate pressure steps (225 and 175 MPa) are not shown. 

Solid lines are equilibrium isobars and dashed lines are isopleths of equilibrium vapor 

composition (labeled as mol% H2O), both calculated after Papale et al. (2006). 

 

Fig. 3 Comparison of experimental run pressures with vapor saturation pressures calculated 

from measured glass H2O  and CO2  contents. Solubility models used in calculations are (a) 

Papale et al. (2006) and (b) VolatileCalc (Newman and Lowenstern, 2002). Grey lines are 1:1 

lines. Dashed line in (a) is a linear fit to the experimental data, used to correct modeled 

pressures as detailed in the Discussion. 

 

Fig. 4 Experimentally-determined pressure fluid composition phase diagram for Sugar Bowl 

rhyodacite at 885 °C. Each grid represents a single run. Solid lines are phase boundaries, with 

phases labeled on the stable side of the boundary. Dashed lines contour measured melt water 

contents. Stars indicate two samples in which a phase inferred to be stable (based on phase 

equilibria of adjacent samples) was not observed by SEM (Table 2). In these cases, phase 

boundaries have been drawn consistent with run products that contain the phase of interest, 

due to the possibility that rare phases were either not intersected or inadvertently missed 
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during BSE observation. The quartz albite orthoclase H2O CO2  solidus at 885 °C is after 

Ebadi and Johannes (1991). Average uncertainty in XH2Ofl  is ±0.02, and uncertainties in run 

pressures are smaller than symbols. 

 

Fig. 5 Total crystallinity of run products versus (a) Ptotal   in water-saturated experiments 

(XH2Ofl   Ptotal   (200 MPa). 

Crystallinity increases with both decreasing pressure and decreasing XH2Ofl   at constant 

temperature as a result of degassing. Errors in mass balance regressions (95% confidence 

intervals) and run pressures are typically smaller than symbols. Crystallinities have been 

calculated by mass balance except where noted in the supplementary materials. 

 

Fig. 6 Select major element variation diagrams for experimental glasses (open circles). Red 

circles give the starting composition (DS-63; Table 1). All data are normalized to 100 wt% 

spot analyses. Also shown are compositions of melt inclusion and matrix glasses erupted at 

Mount St. Helens since 1980 (light grey dots) and whole rock compositions dating 

predominantly from the Holocene (dark grey dots), taken from a suite of 535 published 

analyses (see Blundy et al. 2008 and references therein). 

 

Fig. 7 Compositions of experimental plagioclases. (a) Endmember plagioclase compositions 

plotted on the Ab An Or feldspar ternary (white circles). Numbers at base indicate mol% 

An. Published plagioclase compositions for Mount St. Helens dacites are shown for reference 

(grey dots; Smith 1984; Cashman 1992; Gardner et al. 1995a; Cooper and Reid 2003; Streck 

et al. 2008; grey bar below ternary shows range of compositions reported as binary An Ab, 

which could not be plotted individually; Scheidegger et al. 1982; Berlo et al. 2007). These 

include data from the 2004 2008, 1980 1986, Goat Rocks, Kalama, Pine Creek, and Smith 

Creek eruptive periods. Experimental compositions overlap with those in natural Sugar Bowl 

dacites (black dots and black bar; Smith 1984; Smith and Leeman 1987; Berlo et al. 2007). 

Plotted, but unreported, Sugar Bowl plagioclase compositions from Smith (1984) and Smith 

and Leeman (1987) have been visually estimated to the nearest mol% An and included in the 

black bar. (b) Anorthite content of plagioclase in water-saturated experiments (XH2Ofl  

versus Ptotal  and (c) anorthite content of plagioclase in experiments at Ptotal  = 200 MPa versus 

fluid composition. Grey lines in (b) and (c) are linear fits to the experimental data with the 

coefficients provided. 
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Fig. 8 Compositions of experimental orthopyroxenes. (a) Experimental orthopyroxene 

compositions plotted on the En Fs Wo ternary. Numbers at base indicate mol% En. 

Published orthopyroxene compositions for Mount St. Helens dacites (grey dots) are shown 

for reference; data are predominantly from the 1980 1986 eruptions (Saunders et al. 2012) 

but include analyses from the Goat Rocks, Kalama, Pine Creek, and Swift Creek eruptive 

periods (Smith 1984; Smith and Leeman 1987). Plotted, but unreported, compositions from 

Smith and Leeman (1987) have been visually estimated to the nearest mol%. Also shown are 

orthopyroxene compositions for the Sugar Bowl rhyodacite (black dots; Smith 1984). 

Experimental orthopyroxene compositions overlap with those of Sugar Bowl and other 

dacites, but extend to higher En. (b) Orthopyroxene compositions versus fO2, in log units 

relative to the NNO buffer. The enstatite content of experimental pyroxenes is broadly 

correlated with measured oxygen fugacities. 

 

Fig. 9 (a) Endmember degassing paths (black arrows) and experimentally-determined, vapor-

saturated phase equilibria projected in CO2 H2O   space. Isobars (grey lines) and vapor 

isopleths (dashed grey lines, labeled as mol% H2O) were modeled for the experimental 

starting composition after Papale et al. (2006); modeled saturation pressures have been 

corrected using the relationship in Fig. 3a. Paths depict a range of possible degassing 

scenarios: (A) water-saturated ascent; (B) closed-system degassing of a melt containing 5.3 

wt% H2O  and 1282 ppm CO2  (after Blundy et al. 2010); (C) vapor-buffered ascent at XH2Ofl  

= 0.8; and (D) isobaric vapor fluxing at 200 MPa. In each example, water exsolution 

proceeds in the direction of the arrow. The initial composition of each path, as considered in 

the text, is shown with a solid circle, excepting Path B, which begins off the diagram. The y-

axis is offset for clarity. (b) Melt inclusion compositions from the 1980 1986 eruptions of 

Mount St. Helens (Blundy et al. 2010; Cashman and Blundy 2013) overlain on projected 

phase equilibria of the Sugar Bowl rhyodacite. Symbols designate inclusions from the May 

18th, 1980 Plinian eruption (dark blue circles), post-May 18th explosive eruptions (open 

squares), and post-May 18th effusive dome eruptions (light blue triangles). 

 

Fig. 10 Examples of experimental data (closed symbols) and regression fits (red lines) used 

to parameterize phase abundances and compositions as a function of melt H2O  content. Open 

symbols show data excluded from regressions. All data were fitted with unweighted 

hyperbolic functions of the form y = a + b[tanh(cx + d)] or y = a + b[sinh(cx + d)]. Examples 
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shown are (a) total crystallinity versus dissolved H2O, (b) plagioclase anorthite content versus 

total crystallinity, (c) melt SiO2 content versus dissolved H2O, and (d) orthopyroxene 

abundance versus dissolved H2O. The compositions of long-duration decompression 

experiments with equilibrium crystallinities (Riker et al. in review) have been used to anchor 

regressions at low water content. In order to extend parameterizations from the liquidus to the 

solidus, hyperbolic fits are constrained, where reasonable, by inferred solidus conditions (cf. 

Fig. 4)

the 95% confidence interval of the mass balance coefficient. Similar regressions have been 

obtained for plagioclase and oxide abundances. See text for regression equations. 

 

Fig. 11 (a d) Variations of phase proportions, plagioclase anorthite contents, and dissolved 

volatile concentrations in the Sugar Bowl rhyodacite along the modeled degassing paths 

shown in Fig. 9. Abundances are given for melt (white), plagioclase (light blue), 

orthopyroxene (light orange), amphibole (dark blue), and total oxides (dark orange). The 

crystallization sequence along each path is also shown. (e h) Modeled variations in melt 

composition, plagioclase composition, and crystallinity as a function of total pressure. 

Degassing proceeds in the direction of the arrow. 

 

Fig. 12 Modeled crystallinity of the Sugar Bowl rhyodacite as a function of pressure for 

fluids with XH2O  0.6 1.0. vapor fluxing in driving crystallization 

of magma initially in equilibrium with a pure-water vapor (x-axis gives the difference 

between the modeled equilibrium crystallinity at the fluid composition of interest and that at 

XH2Ofl  = 1). Grey shaded area is the inferred pressure range of pre-eruptive magma storage 

prior to the 1980 eruption of Mount St. Helens (e.g. Rutherford et al. 1985; Scandone and 

Malone 1985; Rutherford and Devine 1988; Lees 1992; Moran 1994; Gardner et al. 1995b; 

Blundy and Cashman 2001; Blundy et al. 2008). 
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Table 1  Compositions of experimental starting materials (wt% anhydrous) 

DS-63 a SB3 b SB4 b

SiO2 69.23 69.52 (0.88) 69.48 (0.54)
TiO2 0.37 0.36 (0.03) 0.34 (0.03)
Al2O3 15.90 16.05 (0.42) 15.93 (0.26)
FeOT 3.62 3.36 (0.30) 3.58 (0.15)
MnO 0.06 0.06 (0.04) 0.08 (0.05)
MgO 0.83 0.83 (0.06) 0.80 (0.08)
CaO 3.05 3.00 (0.18) 3.02 (0.13)  
Na2O 4.97 4.90 (0.18) 4.88 (0.20)
K2O 1.86 1.81 (0.08) 1.80 (0.09)
P2O5 0.11 0.10 (0.02) 0.10 (0.03)
H2O

 c n/a 0.02 (0.00) 0.02 (0.00)   
CO2

d n/a 0.86  
CO2

e n/a <0.01 (0.01) 1.02 (0.04)
n n/a 60 60

T  
a XRF analysis of Sugar Bowl rhyodacite (Smith and Leeman 1987)
b EPMA analysis of starting material fused at 1 atm
c SIMS analysis of starting material fused at 1 atm
d CO2 added to starting material
e Bulk CO2 content measured using an ELTRA CS 800 analyzer at Leibniz Universität Hannover. 
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Table 2  Experimental run conditions, measured volatile contents, and calculated fluid compositions. All runs at 885 °C. 

Sample P Time H2O CO2 XH2O
fl a log f  O2

b CO2 Source Run productsc

 (MPa) (hrs) (wt%) (ppm)

Cold-seal pressure vessel experiments (University of Bristol)    
DSB6 200 72 6.53 (0.17) 34 (9) 0.99 (<0.01) n/a Gl, Pl, Mg, Am
PSB26 175 96 6.69 (0.28) 63 (10) 0.99 (<0.01) 2.7* n/a Gl, Pl, Mg, Am
PSB30 150 96 6.15 (0.36) 76 (16) 0.98 (0.01) n/a Gl, Pl, Mg, Opx, (Am)
PSB32 100 241 4.78 (0.10) 49 (15) 0.97 (0.01) 2.3 n/a Gl, Pl, Mg, Opx, Ilm, (Ap)
PSB33 50 335 3.20 (0.50) 57 (11) 0.92 (0.02) n/a Gl, Pl, Opx, Mg, (Ap)
PSB28 25 506 1.86 d 1.00 e n/a Pl, Gl, Si, Opx, Mg
PSB37 200 216 4.94 (0.03) 700 (32) 0.71 (0.01) Ag2C2O4 Gl, Pl, Opx, Mg
PSB42 200 168 5.09 (0.23) 615 (22) 0.76 (0.03) Ag2C2O4 Gl, Pl, Mg, Opx
PSB43 200 168 6.13 (0.22) 320 (26) 0.92 (0.02) Ag2C2O4 Gl, Pl, Mg, Am
PSB44 175 168 5.44 (0.14) 424 (24) 0.84 (0.02) Ag2C2O4 Gl, Pl, Mg, Opx
PSB45 175 168 6.16 (0.48) 234 (22) 0.94 (0.02) Ag2C2O4 Gl, Pl, Mg, Am, (Opx)
PSB49 200 96 5.53 (0.19) 318 (18) 0.92 (0.04) 3.4 K2CO3 Gl, Pl, Mg, Am, Ilm
PSB50 200 168 5.48 (0.15) 573 (36) 0.81 (0.02) 2.7 K2CO3 Gl, Pl, Mg, Opx, (Ilm), (Am)
PSB51 200 168 4.71 (0.42) 724 (10) 0.69 (0.05) K2CO3 Gl, Pl, Mg, Opx
PSB52 150 209 5.33 (0.26) 201 (23) 0.91 (0.02) 3.1 K2CO3 Gl, Pl, Mg, Am, Ilm, (Opx)
PSB53 150 209 4.46 (0.11) 306 (12) 0.81 (0.01) 2.9 K2CO3 Gl, Pl, Mg, Opx, Ilm, (Am)
PSB54 150 209 3.72 (0.36) 437 (81) 0.67 (0.08) 2.6 K2CO3 Gl, Pl, Mg, Opx, Ilm, Si
PSB55 100 336 4.19 (0.15) 118 (9) 0.89 (0.02) K2CO3 Gl, Pl, Opx, Mg
PSB56 100 336 3.82 (0.12) 197 (9) 0.80 (0.02) K2CO3 Gl, Pl, Opx, Mg
PSB57 100 336 3.39 (0.18) 258 (23) 0.71 (0.04) K2CO3 Gl, Pl, Opx, Mg
PSB58 225 48 6.63 (0.11) 32 (4) 0.99 (<0.01) 1.2* n/a Gl, (Mg)
PSB59 175 167 5.74 (0.24) 248 (7) 0.92 (0.01) 3.0 K2CO3 Gl, Pl, Mg, Ilm, (Opx), (Am)
PSB60 175 167 4.68 (0.16) 379 (16) 0.80 (0.02) 2.7 K2CO3 Gl, Pl, Mg, Am, (Opx), (Ilm)

Internally-heated pressure vessel experiments (Leibniz Universität Hannover)
PSB62 350 120 8.55 (0.12) 34 (2) 1.00 (<0.01) 0.9* n/a Gl, (Mg)
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Sample P Time H2O CO2 XH2O
fl a log f  O2

b CO2 Source Run productsc

 (MPa) (hrs) (wt%) (ppm)

PSB63 350 120 7.11 (0.16) 1001 (12) 0.85 (0.01) 0.2* K2CO3 Gl, (Mg)
PSB64 350 120 6.00 (0.15) 1408 (26) 0.69 (0.02) 0.1* K2CO3 Gl, Pl, Opx, (Mg)
PSB65 457 120 9.62 (0.09) 63 (5) 1.00 (<0.01) 1.5* n/a Gl, (Mg)
PSB66 457 120 7.93 (0.29) 1700 (21) 0.82 (0.02) 0.2* K2CO3 Gl, (Mg)
PSB67 457 120 6.16 (0.09) 2329 (30) 0.60 (0.01) 0.2* K2CO3 Gl, Opx, Pl, (Mg)

H2O and CO2
a Calculated mole fraction water in the equilibrium fluid/vapor (Papale et al. 2006)
b 

formulae of Kress and Carmichael (1991).  All other values calculated from coexisting cubic and rhombohedral oxide compositions (ILMAT; Lepage 2003)
using  the  oxybarometer  of  Andersen  and  Lindsley  (1988)  and  the  solution  model  of  Stormer  (1983),  with  temperatures  forced  to  the  known  run  temperature.    
c ü
Phases listed in order of decreasing abundance.  Trace phases in parentheses. 
d Modeled H2O solubility from Papale et al. 2006 (experimental glass could not be measured). 
e Estimated fluid composition  (experimental glass could not be measured). 





b 

using  the  oxybarometer  of  Andersen  and  Lindsley  (1988)  and  the  solution  model  of  Stormer  (1983),  with  temperatures  forced  to  the  known  run  temperature.    
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