203 research outputs found

    On the uncertain future of the volumetric 3D display paradigm.

    Get PDF
    Volumetric displays permit electronically processed images to be depicted within a transparent physical volume and enable a range of cues to depth to be inherently associated with image content. Further, images can be viewed directly by multiple simultaneous observers who are able to change vantage positions in a natural way. On the basis of research to date, we assume that the technologies needed to implement useful volumetric displays able to support translucent image formation are available and so primarily focus on other issues that have impeded the broad commercialization and application of this display paradigm. This is of particular relevance given the recent resurgence of interest in developing commercially viable, general purpose, volumetric systems. We particularly consider image and display characteristics, usability issues and identify several advantageous attributes that need to be exploited in order to effectively capitalize on this display modality.N/

    Low-temperature muon spin rotation studies of the monopole charges and currents in Y doped Ho2Ti2O7

    Get PDF
    In the ground state of Ho2Ti2O7 spin ice, the disorder of the magnetic moments follows the same rules as the proton disorder in water ice. Excitations take the form of magnetic monopoles that interact via a magnetic Coulomb interaction. Muon spin rotation has been used to probe the low-temperature magnetic behaviour in single crystal Ho2−xYxTi2O7 (x = 0, 0.1, 1, 1.6 and 2). At very low temperatures, a linear field dependence for the relaxation rate of the muon precession λ(B), that in some previous experiments on Dy2Ti2O7 spin ice has been associated with monopole currents, is observed in samples with x = 0, and 0.1. A signal from the magnetic fields penetrating into the silver sample plate due to the magnetization of the crystals is observed for all the samples containing Ho allowing us to study the unusual magnetic dynamics of Y doped spin ice

    Role of the mesoamygdaloid dopamine projection in emotional learning

    Get PDF
    Amygdala dopamine is crucially involved in the acquisition of Pavlovian associations, as measured via conditioned approach to the location of the unconditioned stimulus (US). However, learning begins before skeletomotor output, so this study assessed whether amygdala dopamine is also involved in earlier 'emotional' learning. A variant of the conditioned reinforcement (CR) procedure was validated where training was restricted to curtail the development of selective conditioned approach to the US location, and effects of amygdala dopamine manipulations before training or later CR testing assessed. Experiment 1a presented a light paired (CS+ group) or unpaired (CS- group) with a US. There were 1, 2 or 10 sessions, 4 trials per session. Then, the US was removed, and two novel levers presented. One lever (CR+) presented the light, and lever pressing was recorded. Experiment 1b also included a tone stimulus. Experiment 2 applied intra-amygdala R(+) 7-OH-DPAT (10 nmol/1.0 A mu l/side) before two training sessions (Experiment 2a) or a CR session (Experiment 2b). For Experiments 1a and 1b, the CS+ group preferred the CR+ lever across all sessions. Conditioned alcove approach during 1 or 2 training sessions or associated CR tests was low and nonspecific. In Experiment 2a, R(+) 7-OH-DPAT before training greatly diminished lever pressing during a subsequent CR test, preferentially on the CR+ lever. For Experiment 2b, R(+) 7-OH-DPAT infusions before the CR test also reduced lever pressing. Manipulations of amygdala dopamine impact the earliest stage of learning in which emotional reactions may be most prevalent

    Experimental signature of the attractive Coulomb force between positive and negative magnetic monopoles in spin ice

    Get PDF
    A non-Ohmic current that grows exponentially with the square root of applied electric field is well known from thermionic field emission (the Schottky effect)1, electrolytes (the second Wien effect)2 and semiconductors (the Poole–Frenkel effect)3. It is a universal signature of the attractive Coulomb force between positive and negative electrical charges, which is revealed as the charges are driven in opposite directions by the force of an applied electric field. Here we apply thermal quenches4 to spin ice5,6,7,8,9,10,11 to prepare metastable populations of bound pairs of positive and negative emergent magnetic monopoles12,13,14,15,16 at millikelvin temperatures. We find that the application of a magnetic field results in a universal exponential-root field growth of magnetic current, thus confirming the microscopic Coulomb force between the magnetic monopole quasiparticles and establishing a magnetic analogue of the Poole–Frenkel effect. At temperatures above 300 mK, gradual restoration of kinetic monopole equilibria causes the non-Ohmic current to smoothly evolve into the high-field Wien effect2 for magnetic monopoles, as confirmed by comparison to a recent and rigorous theory of the Wien effect in spin ice17,18. Our results extend the universality of the exponential-root field form into magnetism and illustrate the power of emergent particle kinetics to describe far-from-equilibrium response in complex systems

    A chain mechanism for flagellum growth.

    Get PDF
    Bacteria swim by means of long flagella extending from the cell surface. These are assembled from thousands of protein subunits translocated across the cell membrane by an export machinery at the base of each flagellum. Unfolded subunits then transit through a narrow channel at the core of the growing flagellum to the tip, where they crystallize into the nascent structure. As the flagellum lengthens outside the cell, the rate of flagellum growth does not change. The mystery is how subunit transit is maintained at a constant rate without a discernible energy source in the channel of the external flagellum. We present evidence for a simple physical mechanism for flagellum growth that harnesses the entropic force of the unfolded subunits themselves. We show that a subunit docked at the export machinery can be captured by a free subunit through head-to-tail linkage of juxtaposed amino (N)- and carboxy (C)-terminal helices. We propose that sequential rounds of linkage would generate a multisubunit chain that pulls successive subunits into and through the channel to the flagellum tip, and by isolating filaments growing on bacterial cells we reveal the predicted chain of head-to-tail linked subunits in the transit channel of flagella. Thermodynamic analysis confirms that links in the subunit chain can withstand the pulling force generated by rounds of subunit crystallization at the flagellum tip, and polymer theory predicts that as the N terminus of each unfolded subunit crystallizes, the entropic force at the subunit C terminus would increase, rapidly overcoming the threshold required to pull the next subunit from the export machinery. This pulling force would adjust automatically over the increasing length of the growing flagellum, maintaining a constant rate of subunit delivery to the tip

    AT2018cow: A Luminous Millimeter Transient

    Get PDF
    We present detailed submillimeter- through centimeter-wave observations of the extraordinary extragalactic transient AT2018cow. The apparent characteristics—the high radio luminosity, the rise and long-lived emission plateau at millimeter bands, and the sub-relativistic velocity—have no precedent. A basic interpretation of the data suggests Ek≳4 × 1048 erg{E}_{k}\gtrsim 4\,\times \,{10}^{48}\,\mathrm{erg} coupled to a fast but sub-relativistic (v≈0.13cv\approx 0.13c) shock in a dense (ne≈3 × 105 cm−3{n}_{e}\approx 3\,\times \,{10}^{5}\,{\mathrm{cm}}^{-3}) medium. We find that the X-ray emission is not naturally explained by an extension of the radio-submm synchrotron spectrum, nor by inverse Compton scattering of the dominant blackbody UV/optical/IR photons by energetic electrons within the forward shock. By Δt≈20 days{\rm{\Delta }}t\approx 20\,\mathrm{days}, the X-ray emission shows spectral softening and erratic inter-day variability. Taken together, we are led to invoke an additional source of X-ray emission: the central engine of the event. Regardless of the nature of this central engine, this source heralds a new class of energetic transients shocking a dense medium, which at early times are most readily observed at millimeter wavelengths

    Evaluating Nuclei Concentration in Amyloid Fibrillation Reactions Using Back-Calculation Approach

    Get PDF
    Background: In spite of our extensive knowledge of the more than 20 proteins associated with different amyloid diseases, we do not know how amyloid toxicity occurs or how to block its action. Recent contradictory reports suggest that the fibrils and/or the oligomer precursors cause toxicity. An estimate of their temporal concentration may broaden understanding of the amyloid aggregation process. Methodology/Principal Findings: Assuming that conversion of folded protein to fibril is initiated by a nucleation event, we back-calculate the distribution of nuclei concentration. The temporal in vitro concentration of nuclei for the model hormone, recombinant human insulin, is estimated to be in the picomolar range. This is a conservative estimate since the back-calculation method is likely to overestimate the nuclei concentration because it does not take into consideration fibril fragmentation, which would lower the amount of nuclei Conclusions: Because of their propensity to form aggregates (non-ordered) and fibrils (ordered), this very low concentration could explain the difficulty in isolating and blocking oligomers or nuclei toxicity and the long onset time for amyloid diseases

    Clara cell adhesion and migration to extracellular matrix

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clara cells are the epithelial progenitor cell of the small airways, a location known to be important in many lung disorders. Although migration of alveolar type II and bronchiolar ciliated epithelial cells has been examined, the migratory response of Clara cells has received little attention.</p> <p>Methods</p> <p>Using a modification of existing procedures for Clara cell isolation, we examined mouse Clara cells and a mouse Clara-like cell line (C22) for adhesion to and migration toward matrix substrate gradients, to establish the nature and integrin dependence of migration in Clara cells.</p> <p>Results</p> <p>We observed that Clara cells adhere preferentially to fibronectin (Fn) and type I collagen (Col I) similar to previous reports. Migration of Clara cells can be directed by a fixed gradient of matrix substrates (haptotaxis). Migration of the C22 cell line was similar to the Clara cells so integrin dependence of migration was evaluated with this cell line. As determined by competition with an RGD containing-peptide, migration of C22 cells toward Fn and laminin (Lm) 511 (formerly laminin 10) was significantly RGD integrin dependent, but migration toward Col I was RGD integrin independent, suggesting that Clara cells utilize different receptors for these different matrices.</p> <p>Conclusion</p> <p>Thus, Clara cells resemble alveolar type II and bronchiolar ciliated epithelial cells by showing integrin mediated pro-migratory changes to extracellular matrix components that are present in tissues after injury.</p
    • …
    corecore