8 research outputs found

    Combination radial and thrust magnetic bearing

    Get PDF
    A combination radial and thrust magnetic bearing is disclosed that allows for both radial and thrust axes control of an associated shaft. The combination radial and thrust magnetic bearing comprises a rotor and a stator. The rotor comprises a shaft, and first and second rotor pairs each having respective rotor elements. The stator comprises first and second stator elements and a magnet-sensor disk. In one embodiment, each stator element has a plurality of split-poles and a corresponding plurality of radial force coils and, in another embodiment, each stator element does not require thrust force coils, and radial force coils are replaced by double the plurality of coils serving as an outer member of each split-pole half

    A Spaceflight Magnetic Bearing Equipped Optical Chopper with Six-Axis Active Control

    Get PDF
    This paper describes the development of an ETU (Engineering Test Unit) rotary optical chopper with magnetic bearings. An ETU is required to be both flight-like, nearly identical to a flight unit without the need for material certifications, and demonstrate structural and performance integrity. A prototype breadboard design previously demonstrated the feasibility of meeting flight performance requirements using magnetic bearings. The chopper mechanism is a critical component of the High Resolution Dynamics Limb Sounder (HIRDLS) which will be flown on EOS-CHEM (Earth Observing System-Chemistry). Particularly noteworthy are the science requirements which demand high precision positioning and minimal power consumption along with full redundancy of coils and sensors in a miniature, lightweight package. The magnetic bearings are unique in their pole design to minimize parasitic losses and utilize collocated optical sensing. The motor is of an unusual disk-type ironless stator design. The ETU design has evolved from the breadboard design. A number of improvements have been incorporated into the ETU design. Active thrust control has been added along with changes to improve sensor stability, motor efficiency, and touchdown and launch survivability. It was necessary to do all this while simultaneously reducing the mechanism volume. Flight-like electronics utilize a DSP (Digital Signal Processor) and contain all sensor electronics and drivers on a single five inch by nine inch circuit board. Performance test results are reported including magnetic bearing and motor rotational losses

    A cryogenic scan mechanism for use in Fourier transform spectrometers

    Get PDF
    This paper describes the requirements, design, assembly and testing of the linear Scan Mechanism (SM) of the Composite Infrared Spectrometer (CIRS) Instrument. The mechanism consists of an over constrained flexible structure, an innovative moving magnet actuator, passive eddy current dampers, a Differential Eddy Current (DEC) sensor, Optical Limit Sensors (OLS), and a launch lock. Although all the components of the mechanism are discussed, the flexible structure and the magnetic components are the primary focus. Several problems encountered and solutions implemented during the development of the scan mechanism are also described

    Spectrometer Scan Mechanism for Encountering Jovian Orbit Trojan Asteroids

    Get PDF
    This paper describes the design, testing, and lessons learned during the development of the Lucy Ralph (L'Ralph) Scan Mirror System (SMS), composed of the Scan Mirror Mechanism (SMM), Differential Position Sensor System (DPSS) and Mechanism Control Electronics (MCE). The L'Ralph SMS evolved from the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM), so design comparisons will be made. Lucy is scheduled to launch in October 2021, embarking upon a 12-year mission to make close range encounters in 2025 and 2033 with seven Trojan asteroids and one main belt asteroid that are within the Jovian orbit. The L'Ralph instrument is based upon the New Horizons Ralph instrument, which is a panchromatic and color visible imager and infrared spectroscopic mapper that slewed the spacecraft for imaging. The L'Ralph SMM is to provide scanning for imaging to eliminate the need to slew the spacecraft. One purpose of this paper is to gain understanding of the reasoning behind some of the design features as compared with the ATLAS BSM. We will identify similarities and differences between the ATLAS BSM and the L'Ralph SMM that resulted from the latter's unique requirements. Another purpose of this paper is to focus upon "Lessons Learned" that came about during the development of the L'Ralph SMM and its MCE, both mechanism engineering issues and solutions as well as Ground Support Equipment (GSE) issues and solutions that came about during the validation of requirements process. At the time of this writing, the L'Ralph SMM has been flight qualified and delivered to the project

    ATLAS Beam Steering Mechanism (BSM) Lessons Learned

    Get PDF
    This paper describes the design, testing, and lessons learned during the development of the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM). The BSM is a 2 degree-of-freedom tip-tilt mechanism for the purpose of pointing a flat mirror to tightly control the co-alignment of the transmitted laser and the receiver telescope of the ATLAS instrument. The high resolution needs of the mission resulted in sub-arcsecond pointing and knowledge requirements, which have been met. Development of the methodology to verify performance required significant effort. The BSM will fly as part of the Ice, Cloud, and Elevation Satellite II Mission (ICESat II), which is scheduled to be launched in 2017. The ICESat II primary mission is to map the Earth's surface topography for the determination of seasonal changes of ice sheet thickness and vegetation canopy thickness to establish long-term trends

    Beam Steering Mechanism (BSM) Lessons Learned

    Get PDF
    This paper describes the design, testing, and lessons learned during the development of the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM). The BSM is a 2 degree-of-freedom tip-tilt mechanism for the purpose of pointing a flat mirror to tightly control the co-alignment of the transmitted laser and the receiver telescope of the ATLAS instrument. High resolution needs of the mission resulted in sub-arcsecond pointing and knowledge requirements, which have been met. Development of methodology to verify performance was a significant effortadvancement. The BSM will fly as part of the Ice, Cloud, and Elevation Satellite 2 Mission (ICESat 2), which is scheduled to be launched in 2017. The ICESat 2 primary mission is to map the earths surface topography for the determination of seasonal changes of ice sheet thickness as well as vegetation canopy thickness

    Novel Integrated Radial and Axial Magnetic Bearing

    No full text
    Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics, separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and analysis results will be presented
    corecore