16,352 research outputs found
Non-stationary patterns of isolation-by-distance: inferring measures of local genetic differentiation with Bayesian kriging
Patterns of isolation-by-distance arise when population differentiation
increases with increasing geographic distances. Patterns of
isolation-by-distance are usually caused by local spatial dispersal, which
explains why differences of allele frequencies between populations accumulate
with distance. However, spatial variations of demographic parameters such as
migration rate or population density can generate non-stationary patterns of
isolation-by-distance where the rate at which genetic differentiation
accumulates varies across space. To characterize non-stationary patterns of
isolation-by-distance, we infer local genetic differentiation based on Bayesian
kriging. Local genetic differentiation for a sampled population is defined as
the average genetic differentiation between the sampled population and fictive
neighboring populations. To avoid defining populations in advance, the method
can also be applied at the scale of individuals making it relevant for
landscape genetics. Inference of local genetic differentiation relies on a
matrix of pairwise similarity or dissimilarity between populations or
individuals such as matrices of FST between pairs of populations. Simulation
studies show that maps of local genetic differentiation can reveal barriers to
gene flow but also other patterns such as continuous variations of gene flow
across habitat. The potential of the method is illustrated with 2 data sets:
genome-wide SNP data for human Swedish populations and AFLP markers for alpine
plant species. The software LocalDiff implementing the method is available at
http://membres-timc.imag.fr/Michael.Blum/LocalDiff.htmlComment: In press, Evolution 201
Continuous measurement of shock velocity using a microwave technique
Microwave technique for continuous measurement of shock wave velocit
The mean, variance and limiting distribution of two statistics sensitive to phylogenetic tree balance
For two decades, the Colless index has been the most frequently used
statistic for assessing the balance of phylogenetic trees. In this article,
this statistic is studied under the Yule and uniform model of phylogenetic
trees. The main tool of analysis is a coupling argument with another well-known
index called the Sackin statistic. Asymptotics for the mean, variance and
covariance of these two statistics are obtained, as well as their limiting
joint distribution for large phylogenies. Under the Yule model, the limiting
distribution arises as a solution of a functional fixed point equation. Under
the uniform model, the limiting distribution is the Airy distribution. The
cornerstone of this study is the fact that the probabilistic models for
phylogenetic trees are strongly related to the random permutation and the
Catalan models for binary search trees.Comment: Published at http://dx.doi.org/10.1214/105051606000000547 in the
Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute
of Mathematical Statistics (http://www.imstat.org
Growth of Dust as the Initial Step Toward Planet Formation
We discuss the results of laboratory measurements and theoretical models
concerning the aggregation of dust in protoplanetary disks, as the initial step
toward planet formation. Small particles easily stick when they collide and
form aggregates with an open, often fractal structure, depending on the growth
process. Larger particles are still expected to grow at collision velocities of
about 1m/s. Experiments also show that, after an intermezzo of destructive
velocities, high collision velocities above 10m/s on porous materials again
lead to net growth of the target. Considerations of dust-gas interactions show
that collision velocities for particles not too different in surface-to-mass
ratio remain limited up to sizes about 1m, and growth seems to be guaranteed to
reach these sizes quickly and easily. For meter sizes, coupling to nebula
turbulence makes destructive processes more likely. Global aggregation models
show that in a turbulent nebula, small particles are swept up too fast to be
consistent with observations of disks. An extended phase may therefore exist in
the nebula during which the small particle component is kept alive through
collisions driven by turbulence which frustrates growth to planetesimals until
conditions are more favorable for one or more reasons.Comment: Protostars and Planets V (PPV) review. 18 pages, 5 figure
Numerical simulation of viscous supersonic flow over a generic fighter configuration
A procedure is presented, as well as some results, to calculate the flow over a generic fighter configuration. A parabolized marching Navier-Stokes code is used to obtain the solution over a wing-canopy body. The flow conditions simulate supersonic cruise with a freestream Mach number of 2.169 and angles of attack of 4 and 10 deg. The body surface is considered to be an adiabatic wall and the flow is assumed to be turbulent for the given Reynolds number
Golden Ratio Prediction for Solar Neutrino Mixing
It has recently been speculated that the solar neutrino mixing angle is
connected to the golden ratio phi. Two such proposals have been made, cot
theta_{12} = phi and cos theta_{12} = phi/2. We compare these Ansatze and
discuss a model leading to cos theta_{12} = phi/2 based on the dihedral group
D_{10}. This symmetry is a natural candidate because the angle in the
expression cos theta_{12} = phi/2 is simply pi/5, or 36 degrees. This is the
exterior angle of a decagon and D_{10} is its rotational symmetry group. We
also estimate radiative corrections to the golden ratio predictions.Comment: 15 pages, 1 figure. Matches published versio
- …