453 research outputs found

    An Integrated-Photonics Optical-Frequency Synthesizer

    Full text link
    Integrated-photonics microchips now enable a range of advanced functionalities for high-coherence applications such as data transmission, highly optimized physical sensors, and harnessing quantum states, but with cost, efficiency, and portability much beyond tabletop experiments. Through high-volume semiconductor processing built around advanced materials there exists an opportunity for integrated devices to impact applications cutting across disciplines of basic science and technology. Here we show how to synthesize the absolute frequency of a lightwave signal, using integrated photonics to implement lasers, system interconnects, and nonlinear frequency comb generation. The laser frequency output of our synthesizer is programmed by a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and traceability to the SI second. This is accomplished with a heterogeneously integrated III/V-Si tunable laser, which is guided by dual dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through out-of-loop measurements of the phase-coherent, microwave-to-optical link, we verify that the fractional-frequency instability of the integrated photonics synthesizer matches the 7.0βˆ—10βˆ’137.0*10^{-13} reference-clock instability for a 1 second acquisition, and constrain any synthesis error to 7.7βˆ—10βˆ’157.7*10^{-15} while stepping the synthesizer across the telecommunication C band. Any application of an optical frequency source would be enabled by the precision optical synthesis presented here. Building on the ubiquitous capability in the microwave domain, our results demonstrate a first path to synthesis with integrated photonics, leveraging low-cost, low-power, and compact features that will be critical for its widespread use.Comment: 10 pages, 6 figure

    Bimodal Effect on Pancreatic Ξ²-Cells of Secretory Products From Normal or Insulin-Resistant Human Skeletal Muscle

    Get PDF
    OBJECTIVE: Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) beta-cells. RESEARCH DESIGN AND METHODS: Human skeletal muscle cells were cultured for up to 24 h with tumor necrosis factor (TNF)-alpha to induce insulin resistance, and mRNA expression for cytokines was analyzed and compared with controls (without TNF-alpha). Conditioned media were collected and candidate cytokines were measured by antibody array. Human and rat primary beta-cells were used to explore the impact of exposure to conditioned media for 24 h on apoptosis, proliferation, short-term insulin secretion, and key signaling protein phosphorylation and expression. RESULTS: Human myotubes express and release a different panel of myokines depending on their insulin sensitivity, with each panel exerting differential effects on beta-cells. Conditioned medium from control myotubes increased proliferation and glucose-stimulated insulin secretion (GSIS) from primary beta-cells, whereas conditioned medium from TNF-alpha-treated insulin-resistant myotubes (TMs) exerted detrimental effects that were either independent (increased apoptosis and decreased proliferation) or dependent on the presence of TNF-alpha in TM (blunted GSIS). Knockdown of beta-cell mitogen-activated protein 4 kinase 4 prevented these effects. Glucagon-like peptide 1 protected beta-cells against decreased proliferation and apoptosis evoked by TMs, while interleukin-1 receptor antagonist only prevented the latter. CONCLUSIONS: Taken together, these data suggest a possible new route of communication between skeletal muscle and beta-cells that is modulated by insulin resistance and could contribute to normal beta-cell functional mass in healthy subjects, as well as the decrease seen in type 2 diabetes

    VIP Regulates the Development & Proliferation of Treg in vivo in spleen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mounting evidence supports a key role for VIP as an anti-inflammatory agent and promoter of immune tolerance. It suppresses TNF-Ξ± and other inflammatory cytokines and chemokines, upregulates anti-inflammatory IL-10, and promotes immune tolerant cells called T regulatory (Treg) cells. VIP KO mice have recently been demonstrated to have spontaneous airway and pulmonary perivascular inflammatory responses, as part of asthma-like and pulmonary hypertension phenotypes, respectively. Both inflammatory responses are correctable with VIP. Focusing on this model, we have now investigated the influence of VIP not only on inflammatory cells but also on Treg cells.</p> <p>Methods</p> <p>Using flow cytometric analysis, we examined the relative preponderance of CD25+CD4+ cells and anti-inflammatory Treg cells, in extracts of thymus and spleen from VIP KO mice (5 VIP KO; 5 VIP KO+ VIP; 10 wild-type). This method allowed antibody-based flow cytometric identification of Treg cells using surface markers CD25 and CD4, along with the: 1) intracellular activation marker FoxP3; and 2) Helios, which distinguishes cells of thymic versus splenic derivation.</p> <p>Conclusions</p> <p>Deletion of the VIP gene results in: 1) CD25+CD4- cell accumulation in the thymus, which is corrected by VIP treatment; 2) more Treg in thymus lacking Foxp3 expression, suggesting VIP is necessary for immune tolerance; and, 3) a tendency towards deficiency of Treg cells in the spleen, which is normalized by VIP treatment. Treg lacking Helios are induced by VIP intrasplenically rather than by migration from the thymus. These results confirm the dual role of VIP as an anti-inflammatory and immune tolerance-promoting agent.</p

    Human Cord Blood Stem Cell-Modulated Regulatory T Lymphocytes Reverse the Autoimmune-Caused Type 1 Diabetes in Nonobese Diabetic (NOD) Mice

    Get PDF
    Background: The deficit of pancreatic islet b cells caused by autoimmune destruction is a crucial issue in type 1 diabetes (T1D). It is essential to fundamentally control the autoimmunity for treatment of T1D. Regulatory T cells (Tregs) play a pivotal role in maintaining self-tolerance through their inhibitory impact on autoreactive effector T cells. An abnormality of Tregs is associated with initiation of progression of T1D. Methodology/Principal Findings: Here, we report that treatment of established autoimmune-caused diabetes in NOD mice with purified autologous CD4 + CD62L + Tregs co-cultured with human cord blood stem cells (CB-SC) can eliminate hyperglycemia, promote islet b-cell regeneration to increase b-cell mass and insulin production, and reconstitute islet architecture. Correspondingly, treatment with CB-SC-modulated CD4 + CD62L + Tregs (mCD4CD62L Tregs) resulted in a marked reduction of insulitis, restored Th1/Th2 cytokine balance in blood, and induced apoptosis of infiltrated leukocytes in pancreatic islets. Conclusions/Significance: These data demonstrate that treatment with mCD4CD62L Tregs can reverse overt diabetes

    Lysozyme M deficiency leads to an increased susceptibility to Streptococcus pneumoniae-induced otitis media

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lysozyme is an antimicrobial innate immune molecule degrading peptidoglycan of the bacterial cell wall. Lysozyme shows the ubiquitous expression in wide varieties of species and tissues including the tubotympanum of mammals. We aim to investigate the effects of lysozyme depletion on pneumococcal clearance from the middle ear cavity.</p> <p>Methods</p> <p>Immunohistochemistry was performed to localize lysozyme in the Eustachian tube. Lysozyme expression was compared between the wild type and the lysozyme M<sup>-/- </sup>mice using real time quantitative RT-PCR and western blotting. Muramidase activity and bactericidal activity of lysozyme was measured using a lysoplate radial diffusion assay and a liquid broth assay, respectively. To determine if depletion of lysozyme M increases a susceptibility to pneumococal otitis media, 50 CFU of <it>S. pneumoniae </it>6B were transtympanically inoculated to the middle ear and viable bacteria were counted at day 3 and 7 with clinical grading of middle ear inflammation.</p> <p>Results</p> <p>Immunolabeling revealed that localization of lysozyme M and lysozyme P is specific to some/particular cell types of the Eustachian tube. Lysozyme P of lysozyme M<sup>-/- </sup>mice was mainly expressed in the submucosal gland but not in the tubal epithelium. Although lysozyme M<sup>-/- </sup>mice showed compensatory up-regulation of lysozyme P, lysozyme M depletion resulted in a decrease in both muramidase and antimicrobial activities. Deficiency in lysozyme M led to an increased susceptibility to middle ear infection with <it>S. pneumoniae </it>6B and resulted in severe middle ear inflammation, compared to wild type mice.</p> <p>Conclusion</p> <p>The results suggest that lysozyme M plays an important role in protecting the middle ear from invading pathogens, particularly in the early phase. We suggest a possibility of the exogenous lysozyme as an adjuvant therapeutic agent for otitis media, but further studies are necessary.</p

    Apoptosis of Purified CD4+ T Cell Subsets Is Dominated by Cytokine Deprivation and Absence of Other Cells in New Onset Diabetic NOD Mice

    Get PDF
    BACKGROUND: Regulatory T cells (Treg) play a significant role in immune homeostasis and self-tolerance. Excessive sensitivity of isolated Treg to apoptosis has been demonstrated in NOD mice and humans suffering of type 1 diabetes, suggesting a possible role in the immune dysfunction that underlies autoimmune insulitis. In this study the sensitivity to apoptosis was measured in T cells from new onset diabetic NOD females, comparing purified subsets to mixed cultures. PRINCIPAL FINDINGS: Apoptotic cells are short lived in vivo and death occurs primarily during isolation, manipulation and culture. Excessive susceptibility of CD25(+) T cells to spontaneous apoptosis is characteristic of isolated subsets, however disappears when death is measured in mixed splenocyte cultures. In variance, CD25(-) T cells display balanced sensitivity to apoptosis under both conditions. The isolation procedure removes soluble factors, IL-2 playing a significant role in sustaining Treg viability. In addition, pro- and anti-apoptotic signals are transduced by cell-to-cell interactions: CD3 and CD28 protect CD25(+) T cells from apoptosis, and in parallel sensitize naΓ―ve effector cells to apoptosis. Treg viability is modulated both by other T cells and other subsets within mixed splenocyte cultures. Variations in sensitivity to apoptosis are often hindered by fast proliferation of viable cells, therefore cycling rates are mandatory to adequate interpretation of cell death assays. CONCLUSIONS: The sensitivity of purified Treg to apoptosis is dominated by cytokine deprivation and absence of cell-to-cell interactions, and deviate significantly from measurements in mixed populations. Balanced sensitivity of naΓ―ve/effector and regulatory T cells to apoptosis in NOD mice argues against the concept that differential susceptibility affects disease evolution and progression

    Oral Treatment with Ξ³-Aminobutyric Acid Improves Glucose Tolerance and Insulin Sensitivity by Inhibiting Inflammation in High Fat Diet-Fed Mice

    Get PDF
    Adipocyte and Ξ²-cell dysfunction and macrophage-related chronic inflammation are critical for the development of obesity-related insulin resistance and type 2 diabetes mellitus (T2DM), which can be negatively regulated by Tregs. Our previous studies and those of others have shown that activation of Ξ³-aminobutyric acid (GABA) receptors inhibits inflammation in mice. However, whether GABA could modulate high fat diet (HFD)-induced obesity, glucose intolerance and insulin resistance has not been explored. Here, we show that although oral treatment with GABA does not affect water and food consumption it inhibits the HFD-induced gain in body weights in C57BL/6 mice. Furthermore, oral treatment with GABA significantly reduced the concentrations of fasting blood glucose, and improved glucose tolerance and insulin sensitivity in the HFD-fed mice. More importantly, after the onset of obesity and T2DM, oral treatment with GABA inhibited the continual HFD-induced gain in body weights, reduced the concentrations of fasting blood glucose and improved glucose tolerance and insulin sensitivity in mice. In addition, oral treatment with GABA reduced the epididymal fat mass, adipocyte size, and the frequency of macrophage infiltrates in the adipose tissues of HFD-fed mice. Notably, oral treatment with GABA significantly increased the frequency of CD4+Foxp3+ Tregs in mice. Collectively, our data indicated that activation of peripheral GABA receptors inhibited the HFD-induced glucose intolerance, insulin resistance, and obesity by inhibiting obesity-related inflammation and up-regulating Treg responses in vivo. Given that GABA is safe for human consumption, activators of GABA receptors may be valuable for the prevention of obesity and intervention of T2DM in the clinic

    NK Cells Are Not Required for Spontaneous Autoimmune Diabetes in NOD Mice

    Get PDF
    NK cells have been shown to either promote or protect from autoimmune diseases. Several studies have examined the role of receptors preferentially expressed by NK cells in the spontaneous disease of NOD mice or the direct role of NK cells in acute induced disease models of diabetes. Yet, the role of NK cells in spontaneous diabetes has not been directly addressed. Here, we used the NOD.NK1.1 congenic mouse model to examine the role of NK cells in spontaneous diabetes. Significant numbers of NK cells were only seen in the pancreas of mice with disease. Pancreatic NK cells displayed an activated surface phenotype and proliferated more than NK cells from other tissues in the diseased mice. Nonetheless, depletion of NK cells had no effect on dendritic cell maturation or T cell proliferation. In spontaneous disease, the deletion of NK cells had no significant impact on disease onset. NK cells were also not required to promote disease induced by adoptively transferred pathogenic CD4+ T cells. Thus, NK cells are not required for spontaneous autoimmune diabetes in NOD mice

    Control of TH17 cells occurs in the small intestine

    Get PDF
    Interleukin (IL)-17-producing T helper cells (TH17) are a recently identified CD4+ T cell subset distinct from T helper type 1 (TH1) and T helper type 2 (TH2) cells1. TH17 cells can drive antigen specific autoimmune diseases and are considered the main population of pathogenic T cells driving experimental autoimmune encephalomyelitis (EAE)2, the mouse model for multiple sclerosis. The factors that are needed for the generation of TH17 cells have been well-characterized3–6. However, where and how the immune system controls TH17 cells in vivo remains unclear.Here, by using a model of tolerance induced by CD3-specific antibody, a model of sepsis and influenza A viral infection (H1N1), we show that pro-inflammatory TH17 cells can be redirected to and controlled in the small intestine. TH17-specific IL-17A secretion induced expression of the chemokine CCL20 in the small intestine, facilitating the migration of these cells specifically to the small intestine via the CCR6/CCL20 axis. Moreover, we found that TH17 cells are controlled by two different mechanisms in the small intestine: first, they are eliminated via the intestinal lumen and simultaneously pro-inflammatory TH17 cells acquire a regulatory phenotype with in vitro and in vivo immune-suppressive properties (rTH17). These results identify mechanisms limiting TH17 cell pathogenicity and implicate the gastrointestinal tract as a site for control of TH17 cells
    • …
    corecore