156 research outputs found

    Re-entrant ferroelectricity in liquid crystals

    Full text link
    The ferroelectric (Sm C∗^*) -- antiferroelectric (Sm CA∗^*_A) -- reentrant ferroelectric (re Sm C∗^*) phase temperature sequence was observed for system with competing synclinic - anticlinic interactions. The basic properties of this system are as follows (1) the Sm C∗^* phase is metastable in temperature range of the Sm CA∗^*_A stability (2) the double inversions of the helix handedness at Sm C∗^* -- Sm CA∗^*_A and Sm CA∗^*_A% -- re-Sm C∗^* phase transitions were found (3) the threshold electric field that is necessary to induce synclinic ordering in the Sm CA∗^*_A phase decreases near both Sm CA∗^*_A -- Sm C∗^* and Sm CA∗^*_A -- re-Sm C∗^* phase boundaries, and it has maximum in the middle of the Sm CA∗^*_A stability region. All these properties are properly described by simple Landau model that accounts for nearest neighboring layer steric interactions and quadrupolar ordering only.Comment: 10 pages, 5 figures, submitted to PR

    Reactive Jumps Preserve Skeletal Muscle Structure, Phenotype, and Myofiber Oxidative Capacity in Bed Rest

    Get PDF
    © Copyright © 2020 Blottner, Hastermann, Weber, Lenz, Gambara, Limper, Rittweger, Bosutti, Degens and Salanova. Identification of countermeasures able to prevent disuse-induced muscle wasting is crucial to increase performance of crew members during space flight as well as ameliorate patient’s clinical outcome after long immobilization periods. We report on the outcome of short but high-impact reactive jumps (JUMP) as countermeasure during 60 days of 6° head-down tilt (HDT) bed rest on myofiber size, type composition, capillarization, and oxidative capacity in tissue biopsies (pre/post/recovery) from the knee extensor vastus lateralis (VL) and deep calf soleus (SOL) muscle of 22 healthy male participants (Reactive jumps in a sledge, RSL-study 2015–2016, DLR:envihab, Cologne). Bed rest induced a slow-to-fast myofiber shift (type I –>II) with an increased prevalence of hybrid fibers in SOL after bed rest without jumps (control, CTRL, p = 0.016). In SOL, JUMP countermeasure in bed rest prevented both fast and slow myofiber cross-sectional area (CSA) decrements (p = 0.005) in CTRL group. In VL, bed rest only induced capillary rarefaction, as reflected by the decrease in local capillary-to-fiber ratio (LCFR) for both type II (pre vs. post/R + 10, p = 0.028/0.028) and type I myofibers (pre vs. R + 10, p = 0.012), which was not seen in the JUMP group. VO2maxFiber (pL × mm–1 × min–1) calculated from succinate dehydrogenase (SDH)-stained cryosections (OD660 nm) showed no significant differences between groups. High-impact jump training in bed rest did not prevent disuse-induced myofiber atrophy in VL, mitigated phenotype transition (type I – >II) in SOL, and attenuated capillary rarefaction in the prime knee extensor VL however with little impact on oxidative capacity changes

    Whey protein with potassium bicarbonate supplement attenuates the reduction in muscle oxidative capacity during 19 days bed rest.

    Get PDF
    The effectiveness of whey protein plus potassium bicarbonate enriched-diet (WP+KHCO3) to mitigate disuse-induced changes in muscle fibre oxidative capacity and capillarization was investigated in a 21-day crossover design bed rest study. Ten healthy men (31±6 years) once received WP+KHCO3 and once received a standardized isocaloric diet. Muscle biopsies were taken two days before and during the 19th day of bed rest (BR) from the soleus (SOL) and vastus lateralis (VL) muscle. Whole body aerobic power (VO2max), muscle fatigue and isometric strength of knee extensor and plantar flexor muscles were monitored. Muscle fiber types and capillaries were identified by immunohistochemistry. Fiber oxidative capacity was determined as the optical density (OD) at 660 nm of succinate dehydrogenase (SDH)-stained sections. The product of fiber cross-sectional area and SDH-OD (integrated SDH) indicated the maximal oxygen consumption of that fiber. The maximal oxygen consumption supported by a capillary was calculated as the integrated SDH in its supply area. BR reduced isometric strength of knee extensor muscles (P<0.05), and the fiber oxidative capacity (P<0.001) and VO2max (P=0.042), but had no significant impact on muscle capillarization or fatigue resistance of thigh muscles. The maximal oxygen consumption supported by a capillary was reduced by 24% in SOL and 16% in VL (P<0.001). WP+KHCO3 attenuated the disuse-induced reduction in fiber oxidative capacity in both muscles (P<0.01). In conclusion, following 19 days bed rest, the decrement in fiber oxidative capacity is proportionally larger than the loss of capillaries. WP+KHCO3 appears to attenuate disuse-induced reductions in fiber oxidative capacity

    J Musculoskelet Neuronal Interact

    No full text
    Long-term bed-rest is used to simulate the effect of spaceflight on the human body and test different kinds of countermeasures. The 2nd Berlin BedRest Study (BBR2-2) tested the efficacy of whole-body vibration in addition to high-load resisitance exercise in preventing bone loss during bed-rest. Here we present the protocol of the study and discuss its implementation. Twenty-four male subjects underwent 60-days of six-degree head down tilt bed-rest and were randomised to an inactive control group (CTR), a high-load resistive exercise group (RE) or a high-load resistive exercise with whole-body vibration group (RVE). Subsequent to events in the course of the study (e.g. subject withdrawal), 9 subjects participated in the CTR-group, 7 in the RVE-group and 8 (7 beyond bed-rest day-30) in the RE-group. Fluid intake, urine output and axiallary temperature increased during bed-rest (p or = .17). Body weight changes differed between groups (p < .0001) with decreases in the CTR-group, marginal decreases in the RE-group and the RVE-group displaying significant decreases in body-weight beyond bed-rest day-51 only. In light of events and experiences of the current study, recommendations on various aspects of bed-rest methodology are also discussed

    Tensiomyography detects early hallmarks of bed-rest-induced atrophy before changes in muscle architecture.

    Get PDF
    In young and older people skeletal muscle mass is reduced after as little as seven days of disuse. The declines in muscle mass after such short periods are of high clinical relevance, particularly in older people who show higher atrophy rate, and a slower, or even a complete lack of muscle mass recovery after disuse. Ten men (24.3± 2.6 years) underwent 35 days of 6° head-down tilt bed rest followed by 30 days of recovery. During bed rest, a neutral energy balance was maintained, with three weekly passive physiotherapy sessions to minimise muscle soreness and joint stiffness. All measurements were performed in a hospital at days 1-10 (BR1-BR10), day 16 (BR16), 28 (BR28) and 35 (BR35) of bed rest, and day 1 (R+1), 3 (R+3) and 30 (R+30) after reambulation. Vastus medialis obliquus (VMO), vastus medialis longus (VML) and biceps femoris (BF) thickness (d) and pennation angle (Θ) were assessed by ultrasonography, while twitch muscle belly displacement (Dm) and contraction time (Tc) were assessed with tensiomyography. After bed rest, d and Θ decreased by 13-17% in all muscles (P<.001) and had recovered at R+30. Dm was increased by 42.3-84.4% (P<.001) at BR35 and preceded the decrease in d by 7, 5 and 3 days in VMO, VML and BF, respectively. Tc increased only in BF (32.1%; P<.001) and was not recovered at R+30. Tensiomyography can detect early bed-rest-induced changes in muscle with higher sensitivity before overt architectural changes and atrophy can be detected

    On Validating an Astrophysical Simulation Code

    Full text link
    We present a case study of validating an astrophysical simulation code. Our study focuses on validating FLASH, a parallel, adaptive-mesh hydrodynamics code for studying the compressible, reactive flows found in many astrophysical environments. We describe the astrophysics problems of interest and the challenges associated with simulating these problems. We describe methodology and discuss solutions to difficulties encountered in verification and validation. We describe verification tests regularly administered to the code, present the results of new verification tests, and outline a method for testing general equations of state. We present the results of two validation tests in which we compared simulations to experimental data. The first is of a laser-driven shock propagating through a multi-layer target, a configuration subject to both Rayleigh-Taylor and Richtmyer-Meshkov instabilities. The second test is a classic Rayleigh-Taylor instability, where a heavy fluid is supported against the force of gravity by a light fluid. Our simulations of the multi-layer target experiments showed good agreement with the experimental results, but our simulations of the Rayleigh-Taylor instability did not agree well with the experimental results. We discuss our findings and present results of additional simulations undertaken to further investigate the Rayleigh-Taylor instability.Comment: 76 pages, 26 figures (3 color), Accepted for publication in the ApJ

    Whey protein plus bicarbonate supplement has little effects on structural atrophy and proteolysis marker immunopatterns in skeletal muscle disuse during 21 days of bed rest

    Get PDF
    Objectives: To investigate the effect of whey protein plus potassium bicarbonate supplement on disused skeletal muscle structure and proteolysis after bed rest (BR). Methods: Soleus (SOL) and vastus lateralis (VL) biopsies were sampled from ten (n=10) healthy male subjects (aged 31±6 years) who did BR once with and once without protein supplement as a dietary countermeasure (cross-over study design). The structural changes (myofibre size and type distribution) were analysed by histological sections, and muscle protein breakdown indirectly via the proteolysis markers, calpain 1 and 3, calpastatin, MuRF1 and 2, both in muscle homogenates and by immunohistochemistry. Results: BR caused size-changes in myofiber cross-sectional area (FCSA, SOL, p=0,004; VL, p=0.03), and myofiber slow-to-fast type transition with increased hybrids (SOL, p=0.043; VL, p=0.037) however with campaign differences in SOL (p<0.033). No significant effect of BR and supplement was found by any of the key proteolysis markers. Conclusions: Campaign differences in structural muscle adaptation may be an issue in cross-over design BR studies. The whey protein plus potassium bicarbonate supplement did not attenuate atrophy and fibre type transition during medium term bed rest. Alkaline whey protein supplements may however be beneficial as adjuncts to exercise countermeasures in disuse

    Diurnal variations in the expression of core-clock genes correlate with resting muscle properties and predict fluctuations in exercise performance across the day

    Get PDF
    OBJECTIVES: In this study, we investigated daily fluctuations in molecular (gene expression) and physiological (biomechanical muscle properties) features in human peripheral cells and their correlation with exercise performance. METHODS: 21 healthy participants (13 men and 8 women) took part in three test series: for the molecular analysis, 15 participants provided hair, blood or saliva time-course sampling for the rhythmicity analysis of core-clock gene expression via RT-PCR. For the exercise tests, 16 participants conducted strength and endurance exercises at different times of the day (9h, 12h, 15h and 18h). Myotonometry was carried out using a digital palpation device (MyotonPRO), five muscles were measured in 11 participants. A computational analysis was performed to relate core-clock gene expression, resting muscle tone and exercise performance. RESULTS: Core-clock genes show daily fluctuations in expression in all biological samples tested for all participants. Exercise performance peaks in the late afternoon (15-18 hours for both men and women) and shows variations in performance, depending on the type of exercise (eg, strength vs endurance). Muscle tone varies across the day and higher muscle tone correlates with better performance. Molecular daily profiles correlate with daily variation in exercise performance. CONCLUSION: Training programmes can profit from these findings to increase efficiency and fine-tune timing of training sessions based on the individual molecular data. Our results can benefit both professional athletes, where a fraction of seconds may allow for a gold medal, and rehabilitation in clinical settings to increase therapy efficacy and reduce recovery times
    • 

    corecore