34 research outputs found

    Fas Signalling Promotes Intercellular Communication in T Cells

    Get PDF
    Cell-to-cell communication is a fundamental process for development and maintenance of multicellular organisms. Diverse mechanisms for the exchange of molecular information between cells have been documented, such as the exchange of membrane fragments (trogocytosis), formation of tunneling nanotubes (TNTs) and release of microvesicles (MVs). In this study we assign to Fas signalling a pivotal role for intercellular communication in CD4+ T cells. Binding of membrane-bound FasL to Fas expressing target cells triggers a well-characterized pro-apoptotic signalling cascade. However, our results, pairing up flow cytometric studies with confocal microscopy data, highlight a new social dimension for Fas/FasL interactions between CD4+ T cells. Indeed, FasL enhances the formation of cell conjugates (8 fold of increase) in an early time-frame of stimulation (30 min), and this phenomenon appears to be a crucial step to prime intercellular communication. Our findings show that this communication mainly proceeds along a cytosolic material exchange (ratio of exchange >10, calculated as ratio of stimulated cells signal divided by that recorded in control cells) via TNTs and MVs release. In particular, inhibition of TNTs genesis by pharmacological agents (Latruculin A and Nocodazole) markedly reduced this exchange (inhibition percentage: >40% and >50% respectively), suggesting a key role for TNTs in CD4+ T cells communication. Although MVs are present in supernatants from PHA-activated T cells, Fas treatment also leads to a significant increase in the amount of released MVs. In fact, the co-culture performed between MVs and untreated cells highlights a higher presence of MVs in the medium (1.4 fold of increase) and a significant MVs uptake (6 fold of increase) by untreated T lymphocytes. We conclude that Fas signalling induces intercellular communication in CD4+ T cells by different mechanisms that seem to start concomitantly with the main pathway (programmed cell death) promoted by FasL

    Benthic pH gradients across a range of shelf sea sediment types linked to sediment characteristics and seasonal variability

    Get PDF
    This study used microelectrodes to record pH profiles in fresh shelf sea sediment cores collected across a range of different sediment types within the Celtic Sea. Spatial and temporal variability was captured during repeated measurements in 2014 and 2015. Concurrently recorded oxygen microelectrode profiles and other sedimentary parameters provide a detailed context for interpretation of the pH data. Clear differences in profiles were observed between sediment type, location and season. Notably, very steep pH gradients exist within the surface sediments (10–20 mm), where decreases greater than 0.5 pH units were observed. Steep gradients were particularly apparent in fine cohesive sediments, less so in permeable sandier matrices. We hypothesise that the gradients are likely caused by aerobic organic matter respiration close to the sediment–water interface or oxidation of reduced species at the base of the oxic zone (NH4+, Mn2+, Fe2+, S−). Statistical analysis suggests the variability in the depth of the pH minima is controlled spatially by the oxygen penetration depth, and seasonally by the input and remineralisation of deposited organic phytodetritus. Below the pH minima the observed pH remained consistently low to maximum electrode penetration (ca. 60 mm), indicating an absence of sub-oxic processes generating H+ or balanced removal processes within this layer. Thus, a climatology of sediment surface porewater pH is provided against which to examine biogeochemical processes. This enhances our understanding of benthic pH processes, particularly in the context of human impacts, seabed integrity, and future climate changes, providing vital information for modelling benthic response under future climate scenarios

    Population genetic structure of and inbreeding in an insular cattle breed, the Jersey, and its implications for genetic resource management

    No full text
    The Jersey is a ubiquitous and successful breed of cattle that originates from the UK Channel Island of Jersey. While the breed has been exported extensively, no imports have taken place to the island since 1789, leading to a concern regarding possible losses of genetic diversity and increased inbreeding. We have conducted the first large-scale genetic analysis of the Jersey cattle using only samples from the island. A total of 223 cattle from all parishes except one were genotyped for 12 microsatellite loci. The average number of alleles per locus and expected heterozygosity were found to be comparatively high (nA=4, He=0.64) with respect to that observed in a number of continental breeds. Only breeds that have been upgraded and are therefore the result of admixture are clearly more variable than the Jersey. We also found a significant but limited amount of genetic differentiation between parishes (Fst=0.013), or even between farms (Fst=0.035) despite an apparent lack of movement. This is confirmed by the application of two recent statistical methods. A Bayesian partition analysis shows that the most probable value of K, the number of possible hidden partitions, is 1 (P0.98). K=2 has a much lower probability (P0.02) while other values are essentially zero. Similarly, we were able to show that there was no support for departure from panmixia other than due to population structure, and thus that there is sufficient background gene flow across the island to overcome local drift. Overall, it appears that the current level of genetic diversity and its distribution within the island means it is unnecessary to import unrelated genetic material to the island for management purposes

    Analysis of the non-recombining Y chromosome defines polymorphisms in domestic pig breeds: ancestral bases identified by comparative sequencing

    No full text
    Sequences from 20 amplicons representing nine different loci and 11369bp from the short arm of the pig Y chromosome were compared using pools of DNA from different European and Chinese breeds. A total of 33 polymorphic sites were identified, including five indels and 28 single nucleotide polymorphisms (SNPs). Three high frequency SNPs within the coding regions of SRY were further analysed across 889 males representing 25 European and 25 Asian breeds or Lines, plus a European Line of Meishan. Two haplotypes seen to be associated with 'European' or 'Chinese' origin in the initial SNP discovery phase were found to be the most common in their respective groups of breeds in a more detailed genotyping study. Two further SRY haplotypes are relatively rare. One was found exclusively within Tamworth, at low frequency in Retinto, and in three Chinese breeds (Huai, Sahwutou and Xiaomeishan). The other uncommon haplotype is found exclusively in Bamajiang, two further Chinese breeds (Hangjiang Black and Longling) and two European rare breeds (Mangalica and Linderödssvin), but appears based on comparison with other suids to represent an ancestral sequence

    Analysis of the non-recombining Y chromosome defines polymorphisms in domestic pig breeds: ancestral bases identified by comparative sequencing.

    No full text
    Sequences from 20 amplicons representing nine different loci and 11369bp from the short arm of the pig Y chromosome were compared using pools of DNA from different European and Chinese breeds. A total of 33 polymorphic sites were identified, including five indels and 28 single nucleotide polymorphisms (SNPs). Three high frequency SNPs within the coding regions of SRY were further analysed across 889 males representing 25 European and 25 Asian breeds or Lines, plus a European Line of Meishan. Two haplotypes seen to be associated with 'European' or 'Chinese' origin in the initial SNP discovery phase were found to be the most common in their respective groups of breeds in a more detailed genotyping study. Two further SRY haplotypes are relatively rare. One was found exclusively within Tamworth, at low frequency in Retinto, and in three Chinese breeds (Huai, Sahwutou and Xiaomeishan). The other uncommon haplotype is found exclusively in Bamajiang, two further Chinese breeds (Hangjiang Black and Longling) and two European rare breeds (Mangalica and Linderödssvin), but appears based on comparison with other suids to represent an ancestral sequence
    corecore