3,639 research outputs found
Quantitative electron probe microanalysis of light elements using energy dispersive x-ray spectrometry.
SIGLELD:D48055/83 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Magnetic structure of free cobalt clusters studied with Stern-Gerlach deflection experiments
We have studied the magnetic properties of free cobalt clusters in two
semi-independent Stern-Gerlach deflection experiments at temperatures between
60 and 307 K. We find that clusters consisting of 13 to 200 cobalt atoms
exhibit behavior that is entirely consistent with superparamagnetism, though
complicated by finite-system fluctuations in cluster temperature. By fitting
the data to the Langevin function, we report magnetic moments per atom for each
cobalt cluster size and compare the results of our two measurements and all
those performed previously. In addition to a gradual decrease in moment per
atom with increasing size, there are oscillations that appear to be caused by
geometrical shell structure. We discuss our observations in light of the two
competing models for Langevin-like magnetization behavior in free clusters,
superparamagnetism and adiabatic magnetization, and conclude that the evidence
strongly supports the superparamagnetic model
Inferring DNA sequences from mechanical unzipping data: the large-bandwidth case
The complementary strands of DNA molecules can be separated when stretched
apart by a force; the unzipping signal is correlated to the base content of the
sequence but is affected by thermal and instrumental noise. We consider here
the ideal case where opening events are known to a very good time resolution
(very large bandwidth), and study how the sequence can be reconstructed from
the unzipping data. Our approach relies on the use of statistical Bayesian
inference and of Viterbi decoding algorithm. Performances are studied
numerically on Monte Carlo generated data, and analytically. We show how
multiple unzippings of the same molecule may be exploited to improve the
quality of the prediction, and calculate analytically the number of required
unzippings as a function of the bandwidth, the sequence content, the elasticity
parameters of the unzipped strands
Trends in total column ozone measurements
It is important to ensure the best available data are used in any determination of possible trends in total ozone in order to have the most accurate estimates of any trends and the associated uncertainties. Accordingly, the existing total ozone records were examined in considerable detail. Once the best data set has been produced, the statistical analysis must examine the data for any effects that might indicate changes in the behavior of global total ozone. The changes at any individual measuring station could be local in nature, and herein, particular attention was paid to the seasonal and latitudinal variations of total ozone, because two dimensional photochemical models indicate that any changes in total ozone would be most pronounced at high latitudes during the winter months. The conclusions derived from this detailed examination of available total ozone can be split into two categories, one concerning the quality and the other the statistical analysis of the total ozone record
Fe XI emission lines in a high resolution extreme ultraviolet spectrum obtained by SERTS
New calculations of radiative rates and electron impact excitation cross
sections for Fe XI are used to derive emission line intensity ratios involving
3s^23p^4 - 3s^23p^33d transitions in the 180-223 A wavelength range. These
ratios are subsequently compared with observations of a solar active region,
obtained during the 1995 flight Solar EUV Research Telescope and Spectrograph
(SERTS). The version of SERTS flown in 1995 incorporated a multilayer grating
that enhanced the instrumental sensitivity for features in the 170 - 225 A
wavelength range, observed in second-order between 340 and 450 A. This
enhancement led to the detection of many emission lines not seen on previous
SERTS flights, which were measured with the highest spectral resolution (0.03
A) ever achieved for spatially resolved active region spectra in this
wavelength range. However, even at this high spectral resolution, several of
the Fe XI lines are found to be blended, although the sources of the blends are
identified in the majority of cases. The most useful Fe XI electron density
diagnostic line intensity ratio is I(184.80 A)/I(188.21 A). This ratio involves
lines close in wavelength and free from blends, and which varies by a factor of
11.7 between N_e = 10^9 and 10^11 cm^-3, yet shows little temperature
sensitivity. An unknown line in the SERTS spectrum at 189.00 A is found to be
due to Fe XI, the first time (to our knowledge) this feature has been
identified in the solar spectrum. Similarly, there are new identifications of
the Fe XI 192.88, 198.56 and 202.42 A features, although the latter two are
blended with S VIII/Fe XII and Fe XIII, respectively.Comment: 21 pages, 9 gigures, accepted for publication in the Astrophysical
Journa
Experiences of mental health professionals supporting front-line health and social care workers during COVID-19: qualitative study
BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is having a well-documented impact on the mental health of front-line health and social care workers (HSCWs). However, little attention has been paid to the experiences of, and impact on, the mental health professionals who were rapidly tasked with supporting them. AIMS: We set out to redress this gap by qualitatively exploring UK mental health professionals' experiences, views and needs while working to support the well-being of front-line HSCWs during the COVID-19 pandemic. METHOD: Mental health professionals working in roles supporting front-line HSCWs were recruited purposively and interviewed remotely. Transcripts of the interviews were analysed by the research team following the principles of reflexive thematic analysis. RESULTS: We completed interviews with 28 mental health professionals from varied professional backgrounds, career stages and settings across the UK. Mental health professionals were motivated and driven to develop new clinical pathways to support HSCWs they perceived as colleagues and many experienced professional growth. However, this also came at some costs, as they took on additional responsibilities and increased workloads, were anxious and uncertain about how best to support this workforce and tended to neglect their own health and well-being. Many were professionally isolated and were affected vicariously by the traumas and moral injuries that healthcare workers talked about in sessions. CONCLUSIONS: This research highlights the urgent need to consider the mental well-being, training and support of mental health professionals who are supporting front-line workers
Contrasting photosynthetic characteristics of forest vs. savanna species (Far North Queensland, Australia)
Forest and savanna are the two dominant vegetation types of the tropical regions with very few tree species common to both. At a broad scale, it has long been recognised that the distributions of these two biomes are principally governed by precipitation and its seasonality, but with soil physical and chemical properties also potentially important. For tree species drawn from a range of forest and savanna sites in tropical Far North Queensland, Australia, we compared leaf traits of photosynthetic capacity, structure and nutrient concentrations. Area-based photosynthetic capacity was higher for the savanna species with a steeper slope to the photosynthesis â nitrogen (N) relationship compared with the forest group. Higher leaf mass per unit leaf area for the savanna trees derived from denser rather than thicker leaves and did not appear to restrict rates of light-saturated photosynthesis when expressed on either an area or mass basis. Median ratios of foliar N to phosphorus (P) were relatively high (>20) at all sites, but we found no evidence for a dominant P limitation of photosynthesis for either forest or savanna trees. A parsimonious mixed-effects model of area-based photosynthetic capacity retained vegetation type and both N and P as explanatory terms. Resulting model-fitted predictions suggested a good fit to the observed data (R2 Combining double low line 0.82). The model's random component found variation in area-based photosynthetic response to be much greater among species (71% of response variance) than across sites (9%). These results suggest that, on a leaf-area basis, savanna trees of Far North Queensland, Australia, are capable of photosynthetically outperforming forest species at their common boundaries.This work was supported by the UK
Natural Environment Research Council (reference NE/F002165/1),
a Royal Society of London UKâAustralia Exchange Award to Jon Lloyd, and the Australian Research Council (reference
DP0986823)
- âŠ