166 research outputs found

    Transmission and evolution of bacteria during the course of enteritis outbreaks : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy, Massey University, Palmerston North, New Zealand

    Get PDF
    Bacterial enteritis outbreaks are a worldwide problem. They are hard to investigate as the bacterial agents are often associated with multiple sources, closely-related bacteria often co-colonise these sources, highly discriminatory tests are often required to distinguish between these bacteria, and bacteria are continuously evolving, changing how they behave. In this thesis I investigated the transmission and evolution of bacteria over the course of enteritis outbreaks by integrating genomic, phenotypic and antibiotic susceptibility testing, and phylogenetic modelling in four studies. The aim of the first study was to investigate the origin, evolution and transmission of Salmonella enterica serovar Typhimurium DT160 over a 14-year long outbreak in New Zealand. Genomic analysis of 109 DT160 isolates collected over this timeframe established that the DT160 strain was introduced into New Zealand approximately a year before the first human isolate was reported; there were frequent transmissions between the source groups investigated (human, wild bird, poultry and bovine); and there was no evidence of specific selective pressures imposed on DT160. This study demonstrated how genomic analyses can be used to investigate extended outbreaks of bacterial diseases. The aim of the second study was to investigate whether two ancestral state reconstruction models (the discrete trait analysis and structured coalescent models) were applicable to salmonellosis outbreak investiga- tions. Both models were used to estimate transmission and population parameters of simulated salmonellosis outbreaks. Comparisons between the models' estimates and the true transmission and population values for the simulations revealed that both models made assumptions that did not apply to outbreaks and prevented them from accurately predicting these parameters. This study highlighted the need for outbreak-specific phylogenetic transmission models. The aim of the third study was to investigate the relationship between two strains of Salmonella that were the predominant causes of human salmonellosis in New Zealand in the 2000s (S. Typhimurium DT160 and S. Typhimurium DT56 variant), and identify potential reasons for one strain declining (DT160) as the other emerged (DT56 variant). This study demonstrated how genomic analyses can be used to compare Salmonella strains and identify genetic elements that may in uence strain behaviour. The aim of the fourth study was to investigate a patient that had presented excreting the same genotype of Campylobacter, C. jejuni ST45, on multiple occasions over a 10-year period. Genomic analyses, pheno- typic testing and antimicrobial susceptibility testing of sixteen Campylobacter isolates collected from the patient found that the patient was persistently colonised with Campylobacter over this period, and that the Campylobacter had adapted to long-term colonisation by altering its motily and developing resistance to the antibiotics the patient had been prescribed. This study demonstrated how genomic analyses can be used to investigate a patient's infection history. These studies demonstrated the applicability and limitations of genomic analyses when investigating bacterial enteritis outbreaks, how genetics and the environment in uence bacterial evolution, and highlighted areas in the fields of microbiology, phylogenetics, epidemiology and public health that require further research

    A taxonomy and comparison of haptic actions for disassembly tasks

    Get PDF
    The usefulness of modern day haptics equipment for virtual simulations of actual maintenance actions is examined. In an effort to categorize which areas haptic simulations may be useful, we have developed a taxonomy for haptic actions. This classification has two major dimensions: the general type of action performed and the type of force or torque required. Building upon this taxonomy, we selected three representative tasks from the taxonomy to evaluate in a virtual reality simulation. We conducted a series of human subject experiments to compare user performance and preference on a disassembly task with and without haptic feedback using CyberGlove, Phantom, and SpaceMouse interfaces. Analysis of the simulation runs shows Phantom users learned to accomplish the simulated actions significantly more quickly than did users of the CyberGlove or the SpaceMouse. Moreover a lack of differences in the post-experiment questionnaire suggests that haptics research should include a measure of actual performance speed or accuracy rather than relying solely on subjective reports of a device’s ease of use

    Tatajuba: exploring the distribution of homopolymer tracts.

    Get PDF
    Length variation of homopolymeric tracts, which induces phase variation, is known to regulate gene expression leading to phenotypic variation in a wide range of bacterial species. There is no specialized bioinformatics software which can, at scale, exhaustively explore and describe these features from sequencing data. Identifying these is non-trivial as sequencing and bioinformatics methods are prone to introducing artefacts when presented with homopolymeric tracts due to the decreased base diversity. We present tatajuba, which can automatically identify potential homopolymeric tracts and help predict their putative phenotypic impact, allowing for rapid investigation. We use it to detect all tracts in two separate datasets, one of Campylobacter jejuni and one of three Bordetella species, and to highlight those tracts that are polymorphic across samples. With this we confirm homopolymer tract variation with phenotypic impact found in previous studies and additionally find many more with potential variability. The software is written in C and is available under the open source licence GNU GPLv3

    Whole genome sequencing reveals great diversity of Vibrio spp in prawns at retail

    Get PDF
    Consumption of prawns as a protein source has been on the rise worldwide with seafood identified as the predominant attributable source of human vibriosis. However, surveillance of non-cholera Vibrio is limited both in public health and in food. Using a population- and market share-weighted study design, 211 prawn samples were collected and cultured for Vibrio spp. Contamination was detected in 46 % of samples, and multiple diverse Vibrio isolates were obtained from 34 % of positive samples. Whole genome sequencing (WGS) and phylogenetic analysis illustrated a comprehensive view of Vibrio species diversity in prawns available at retail, with no known pathogenicity markers identified in Vibrio parahaemolyticus and V. cholerae . Antimicrobial resistance genes were found in 77 % of isolates, and 12 % carried genes conferring resistance to three or more drug classes. Resistance genes were found predominantly in V. parahaemolyticus , though multiple resistance genes were also identified in V. cholerae and V. vulnificus . This study highlights the large diversity in Vibrio derived from prawns at retail, even within a single sample. Although there was little evidence in this study that prawns are a major source of vibriosis in the UK, surveillance of non-cholera Vibrio is very limited. This study illustrates the value of expanding WGS surveillance efforts of non-cholera Vibrios in the food chain to identify critical control points for food safety through the production system and to determine the full extent of the public health impact

    Statistical mechanics of columnar DNA assemblies

    Full text link
    Many physical systems can be mapped onto solved or "solvable" models of magnetism. In this work, we have mapped the statistical mechanics of columnar phases of ideally helical rigid DNA -- subject to the earlier found unusual, frustrated pair potential [A. A. Kornyshev and S. Leikin, J. Chem. Phys. 107, 3656 (1997)] -- onto an exotic, unknown variant of the XY model on a fixed or restructurable lattice. Here the role of the 'spin' is played by the azimuthal orientation of the molecules. We have solved this model using a Hartree-Fock approximation, ground state calculations, and finite temperature Monte Carlo simulations. We have found peculiar spin order transitions, which may also be accompanied by positional restructuring, from hexagonal to rhombohedric lattices. Some of these have been experimentally observed in dense columnar aggregates. Note that DNA columnar phases are of great interest in biophysical research, not only because they are a useful in vitro tool for the study of DNA condensation, but also since these structures have been detected in living matter. Within the approximations made, our study provides insight into the statistical mechanics of these systems.Comment: 19 pages, 18 figure

    Repeated cross-sectional study identifies differing risk factors associated with microbial contamination in common food products in the United Kingdom

    Get PDF
    All foods carry microbes, many of which are harmless, but foods can also carry pathogens and/or microbial indicators of contamination. Limited information exists on the co-occurrence of microbes of food safety concern and the factors associated with their presence. Here, a population-based repeated cross-sectional design was used to determine the prevalence and co-occurrence of Escherichia coli, Klebsiella spp., Salmonella spp. and Vibrio spp. in key food commodities - chicken, pork, prawns, salmon and leafy greens. Prevalence in 1369 food samples for these four target bacterial genera/species varied, while 25.6% of all samples had at least two of the target bacteria and eight different combinations of bacteria were observed as co-occurrence profiles in raw prawns. Imported frozen chicken was 6.4 times more likely to contain Salmonella than domestic chicken, and imported salmon was 5.5 times more likely to be contaminated with E. coli. Seasonality was significantly associated with E. coli and Klebsiella spp. contamination in leafy greens, with higher detection in summer and autumn. Moreover, the odds of Klebsiella spp. contamination were higher in summer in chicken and pork samples. These results provide insight on the bacterial species present on foods at retail, and identify factors associated with the presence of individual bacteria, which are highly relevant for food safety risk assessments and the design of surveillance programmes

    Genomic diversity and epidemiological significance of non-typhoidal Salmonella found in retail food collected in Norfolk, UK

    Get PDF
    Non-typhoidal Salmonella (NTS) is a major cause of bacterial gastroenteritis. Although many countries have implemented whole genome sequencing (WGS) of NTS, there is limited knowledge on NTS diversity on food and its contribution to human disease. In this study, the aim was to characterise the NTS genomes from retail foods in a particular region of the UK and assess the contribution to human NTS infections. Raw food samples were collected at retail in a repeated cross-sectional design in Norfolk, UK, including chicken (n=311), leafy green (n=311), pork (n=311), prawn (n=279) and salmon (n=157) samples. Up to eight presumptive NTS isolates per positive sample underwent WGS and were compared to publicly available NTS genomes from UK human cases. NTS was isolated from chicken (9.6 %), prawn (2.9 %) and pork (1.3 %) samples and included 14 serovars, of which Salmonella Infantis and Salmonella Enteritidis were the most common. The S. Enteritidis isolates were only isolated from imported chicken. No antimicrobial resistance determinants were found in prawn isolates, whilst 5.1 % of chicken and 0.64 % of pork samples contained multi-drug resistant NTS. The maximum number of pairwise core non-recombinant single nucleotide polymorphisms (SNPs) amongst isolates from the same sample was used to measure diversity and most samples had a median of two SNPs (range: 0–251). NTS isolates that were within five SNPs to clinical UK isolates belonged to specific serovars: S. Enteritidis and S. Infantis (chicken), and S. I 4,[5],12:i- (pork and chicken). Most NTS isolates that were closely related to human-derived isolates were obtained from imported chicken, but further epidemiological data are required to assess definitively the probable source of the human cases. Continued WGS surveillance of Salmonella on retail food involving multiple isolates from each sample is necessary to capture the diversity of Salmonella and determine the relative importance of different sources of human disease

    Genomic characterization of Pseudomonas spp. on food: Implications for spoilage, antimicrobial resistance and human infection

    Get PDF
    Background: Pseudomonas species are common on food, but their contribution to the antimicrobial resistance gene (ARG) burden within food or as a source of clinical infection is unknown. Pseudomonas aeruginosa is an opportunistic pathogen responsible for a wide range of infections and is often hard to treat due to intrinsic and acquired ARGs commonly carried by this species. This study aimed to understand the potential role of Pseudomonas on food as a reservoir of ARGs and to assess the presence of potentially clinically significant Pseudomonas aeruginosa strains on food. To achieve this, we assessed the genetic relatedness (using whole genome sequencing) and virulence of food-derived isolates to those collected from humans. Results: A non-specific culturing approach for Pseudomonas recovered the bacterial genus from 28 of 32 (87.5%) retail food samples, although no P. aeruginosa was identified. The Pseudomonas species recovered were not clinically relevant, contained no ARGs and are likely associated with food spoilage. A specific culture method for P. aeruginosa resulted in the recovery of P. aeruginosa from 14 of 128 (11%) retail food samples; isolates contained between four and seven ARGs each and belonged to 16 sequence types (STs), four of which have been isolated from human infections. Food P. aeruginosa isolates from these STs demonstrated high similarity to human-derived isolates, differing by 41–312 single nucleotide polymorphisms (SNPs). There were diverse P. aeruginosa collected from the same food sample with distinct STs present on some samples and isolates belonging to the same ST differing by 19–67 SNPs. The Galleria mellonella infection model showed that 15 of 16 STs isolated from food displayed virulence between a low-virulence (PAO1) and a high virulence (PA14) control. Conclusion: The most frequent Pseudomonas recovered from food examined in this study carried no ARGs and are more likely to play a role in food spoilage rather than infection. P. aeruginosa isolates likely to be able to cause human infections and with multidrug resistant genotypes are present on a relatively small but still substantial proportions of retail foods examined. Given the frequency of exposure, the potential contribution of food to the burden of P. aeruginosa infections in humans should be evaluated more closely

    Comparative genomics of Campylobacter jejuni from clinical campylobacteriosis stool specimens

    Get PDF
    Background: Campylobacter jejuni is a pervasive pathogen of major public health concern with a complex ecology requiring accurate and informative approaches to define pathogen diversity during outbreak investigations. Source attribution analysis may be confounded if the genetic diversity of a C. jejuni population is not adequately captured in a single specimen. The aim of this study was to determine the genomic diversity of C. jejuni within individual stool specimens from four campylobacteriosis patients. Direct plating and pre-culture filtration of one stool specimen per patient was used to culture multiple isolates per stool specimen. Whole genome sequencing and pangenome level analysis were used to investigate genomic diversity of C. jejuni within a patient. Results: A total 92 C. jejuni isolates were recovered from four patients presenting with gastroenteritis. The number of isolates ranged from 13 to 30 per patient stool. Three patients yielded a single C. jejuni multilocus sequence type: ST-21 (n = 26, patient 4), ST-61 (n = 30, patient 1) and ST-2066 (n = 23, patient 2). Patient 3 was infected with two different sequence types [ST-51 (n = 12) and ST-354 (n = 1)]. Isolates belonging to the same sequence type from the same patient specimen shared 12–43 core non-recombinant SNPs and 0–20 frameshifts with each other, and the pangenomes of each sequence type consisted of 1406–1491 core genes and 231–264 accessory genes. However, neither the mutation nor the accessory genes were connected to a specific functional gene category. Conclusions: Our findings show that the C. jejuni population recovered from an individual patient’s stool are genetically diverse even within the same ST and may have shared common ancestors before specimens were obtained. The population is unlikely to have evolved from a single isolate at the time point of initial patient infection, leading us to conclude that patients were likely infected with a heterogeneous C. jejuni population. The diversity of the C. jejuni population found within individual stool specimens can inform future methodological approaches to attribution and outbreak investigations
    • …
    corecore